Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects.

IF 7.2 1区 医学 Q1 TOXICOLOGY Particle and Fibre Toxicology Pub Date : 2023-07-10 DOI:10.1186/s12989-023-00537-7
Karin Rosenkilde Laursen, Nichlas Vous Christensen, Frans Aa Mulder, Jörg Schullehner, Hans Jürgen Hoffmann, Annie Jensen, Peter Møller, Steffen Loft, Anna-Carin Olin, Berit B Rasmussen, Bernadette Rosati, Bo Strandberg, Marianne Glasius, Merete Bilde, Torben Sigsgaard
{"title":"Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects.","authors":"Karin Rosenkilde Laursen,&nbsp;Nichlas Vous Christensen,&nbsp;Frans Aa Mulder,&nbsp;Jörg Schullehner,&nbsp;Hans Jürgen Hoffmann,&nbsp;Annie Jensen,&nbsp;Peter Møller,&nbsp;Steffen Loft,&nbsp;Anna-Carin Olin,&nbsp;Berit B Rasmussen,&nbsp;Bernadette Rosati,&nbsp;Bo Strandberg,&nbsp;Marianne Glasius,&nbsp;Merete Bilde,&nbsp;Torben Sigsgaard","doi":"10.1186/s12989-023-00537-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is insufficient knowledge about the systemic health effects of exposure to fine (PM<sub>2.5</sub>) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM<sub>2.5</sub> µg/m<sup>3</sup><sub>;</sub> polycyclic aromatic hydrocarbons ng/m<sup>3</sup>): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning.</p><p><strong>Results: </strong>SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs.</p><p><strong>Conclusions: </strong>Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332087/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00537-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Background: There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning.

Results: SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs.

Conclusions: Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期暴露于烹饪和蜡烛产生的室内超细颗粒后气道和系统生物标志物对健康的影响——在轻度哮喘受试者中进行的随机对照双盲交叉研究
背景:关于暴露于典型的室内源(包括烹饪和烛光燃烧)排放的细颗粒物(PM2.5)和超细颗粒物对全身健康的影响的知识不足。我们研究了短期暴露于烹饪和燃烧蜡烛的排放物是否会引起患有轻度哮喘的年轻人的炎症变化。36名非吸烟哮喘患者参加了一项随机对照双盲交叉研究,参加了三个暴露期(平均PM2.5µg/m3;多环芳烃ng/m3):(a)烹饪排放物混合的空气(96.1;1.1), (b)与蜡烛排放物混合的空气(89.8;10)和(c)清洁过滤空气(5.8;1.0)。排放物是在相邻的一个房间里产生的,然后进入一个全尺寸的暴露室,参与者在那里暴露了五个小时。评估了几种与气道和全身炎症变化相关的生物标志物;研究的主要结果是呼出空气中液滴中的表面活性剂蛋白a (SP-A)和白蛋白,这是小气道表面活性剂组成变化的新生物标志物。次要结局包括鼻腔灌洗液中的细胞因子、细胞因子、c反应蛋白(CRP)、上皮祖细胞(EPCs)、遗传毒性、与dna修复、氧化应激和炎症相关的基因表达以及血液中的代谢物。在暴露开始前、暴露后和第二天早上采集样本。结果:蜡烛暴露后,呼出空气中SP-A液滴浓度稳定,而烹饪和清洁空气暴露后SP-A浓度下降。与暴露在清洁空气中相比,暴露在烹饪和蜡烛下,呼出空气中液滴中的白蛋白增加了,尽管并不显著。暴露于烹饪后,血液中氧化损伤的DNA和一些脂质和脂蛋白的浓度显著增加。我们发现烹饪和蜡烛暴露与全身性炎症生物标志物(包括细胞因子、CRP和EPCs)之间没有或微弱关联。结论:烹饪和蜡烛排放对一些被检查的与健康相关的生物标志物有影响,而对其他生物标志物没有观察到影响;暴露于烹饪后,血液中氧化损伤的DNA和脂质和脂蛋白浓度增加,而烹饪和蜡烛排放对小气道的影响轻微,包括主要结果SP-A和白蛋白。我们发现暴露与全身炎症生物标志物之间只有微弱的关联。总之,研究结果表明,烹饪和蜡烛暴露后存在轻度炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
期刊最新文献
Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress Spatial regulation of NMN supplementation on brain lipid metabolism upon subacute and sub-chronic PM exposure in C57BL/6 mice Microplastics are associated with elevated atherosclerotic risk and increased vascular complexity in acute coronary syndrome patients. Biodistribution of cerium dioxide and titanium dioxide nanomaterials in rats after single and repeated inhalation exposures. Multimodal pulmonary clearance kinetics of carbon black nanoparticles deposited in the lungs of rats: the role of alveolar macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1