BioMateriOME: to understand microbe-material interactions within sustainable, living architectures.

2区 生物学 Q1 Immunology and Microbiology Advances in applied microbiology Pub Date : 2023-01-01 DOI:10.1016/bs.aambs.2022.11.001
Beatriz Delgado Corrales, Romy Kaiser, Paula Nerlich, Armand Agraviador, Angela Sherry
{"title":"BioMateriOME: to understand microbe-material interactions within sustainable, living architectures.","authors":"Beatriz Delgado Corrales,&nbsp;Romy Kaiser,&nbsp;Paula Nerlich,&nbsp;Armand Agraviador,&nbsp;Angela Sherry","doi":"10.1016/bs.aambs.2022.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2022.11.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioMateriOME:在可持续的、有生命的建筑中理解微生物与物质的相互作用。
BioMateriOME是从一个原型设计过程演变而来的,这个原型设计过程是由设计师、建筑师和微生物学家团队在考虑在建筑环境中使用生物材料或人类与新型生物材料共存时讨论得出的。该原型有两个元素(1)BioMateriOME-Public (BMP),一个交互式公共材料库;(2)BioMateriOME-eXperimental (BMX),一个用于严格微生物组实验的复制材料库。该原型被安装在一个独特的实验生活屋OME中,目的是:(1)深入了解社会对生物材料的看法,(2)分别对新型生物材料与传统室内表面的室内表面微生物群发育进行比较分析。本文综述了BioMateriOME原型及其在微生物学、设计、建筑和社会科学等领域的应用。提供了生物材料制造中微生物和生物成分的使用,以及对传统室内表面常见的微生物群落的欣赏,以及这些群落如何响应我们家中生物材料的实施而发生变化。社会对微生物组和生物材料的看法是在健康建筑的框架内考虑的。最后,介绍了考虑微生物的建筑设计的特点,以及将微生物监测纳入设计和施工基准、标准和法规的可能性,以实现更健康的建筑及其居住者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
期刊最新文献
Stress response and adaptation mechanisms in Kluyveromyces marxianus. Selenium bioactive compounds produced by beneficial microbes. Development and applications of genome-scale metabolic network models. The infant gut microbiota as the cornerstone for future gastrointestinal health. Effects of gut bacteria and their metabolites on gut health of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1