Nodes of Ranvier in health and disease

IF 3.9 3区 医学 Q1 CLINICAL NEUROLOGY Journal of the Peripheral Nervous System Pub Date : 2023-06-05 DOI:10.1111/jns.12568
Yael Eshed-Eisenbach, Peter J. Brophy, Elior Peles
{"title":"Nodes of Ranvier in health and disease","authors":"Yael Eshed-Eisenbach,&nbsp;Peter J. Brophy,&nbsp;Elior Peles","doi":"10.1111/jns.12568","DOIUrl":null,"url":null,"abstract":"<p>Action potential propagation along myelinated axons depends on the geometry of the myelin unit and the division of the underlying axon to specialized domains. The latter include the nodes of Ranvier (NOR), the paranodal junction (PNJ) flanking the nodes, and the adjacent juxtaparanodal region that is located below the compact myelin of the internode. Each of these domains contains a unique composition of axoglial adhesion molecules (CAMs) and cytoskeletal scaffolding proteins, which together direct the placement of specific ion channels at the nodal and juxtaparanodal axolemma. In the last decade it has become increasingly clear that antibodies to some of these axoglial CAMs cause immune-mediated neuropathies. In the current review we detail the molecular composition of the NOR and adjacent membrane domains, describe the function of different CAM complexes that mediate axon-glia interactions along the myelin unit, and discuss their involvement and the underlying mechanisms taking place in peripheral nerve pathologies. This growing group of pathologies represent a new type of neuropathies termed “nodopathies” or “paranodopathies” that are characterized by unique clinical and molecular features which together reflect the mechanisms underlying the molecular assembly and maintenance of this specialized membrane domain.</p>","PeriodicalId":17451,"journal":{"name":"Journal of the Peripheral Nervous System","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jns.12568","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Peripheral Nervous System","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jns.12568","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Action potential propagation along myelinated axons depends on the geometry of the myelin unit and the division of the underlying axon to specialized domains. The latter include the nodes of Ranvier (NOR), the paranodal junction (PNJ) flanking the nodes, and the adjacent juxtaparanodal region that is located below the compact myelin of the internode. Each of these domains contains a unique composition of axoglial adhesion molecules (CAMs) and cytoskeletal scaffolding proteins, which together direct the placement of specific ion channels at the nodal and juxtaparanodal axolemma. In the last decade it has become increasingly clear that antibodies to some of these axoglial CAMs cause immune-mediated neuropathies. In the current review we detail the molecular composition of the NOR and adjacent membrane domains, describe the function of different CAM complexes that mediate axon-glia interactions along the myelin unit, and discuss their involvement and the underlying mechanisms taking place in peripheral nerve pathologies. This growing group of pathologies represent a new type of neuropathies termed “nodopathies” or “paranodopathies” that are characterized by unique clinical and molecular features which together reflect the mechanisms underlying the molecular assembly and maintenance of this specialized membrane domain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朗维耶淋巴结在健康和疾病中的作用
沿着有髓鞘轴突的动作电位传播取决于髓鞘单位的几何形状和潜在轴突向特殊结构域的划分。后者包括兰维尔结(NOR)、位于结两侧的节旁结(PNJ)以及位于节间致密髓鞘下方的邻近的颈旁区。这些结构域中的每一个都包含一种独特的轴珠粘附分子(CAM)和细胞骨架支架蛋白组成,它们共同指导特定离子通道在淋巴结和颈旁轴上的位置。在过去的十年里,越来越清楚的是,针对其中一些轴突CAM的抗体会导致免疫介导的神经病变。在目前的综述中,我们详细介绍了NOR和相邻膜结构域的分子组成,描述了介导髓鞘单元轴突-神经胶质相互作用的不同CAM复合物的功能,并讨论了它们在外周神经病理中的参与和潜在机制。这一不断增长的病理组代表了一种新型的神经病理学,称为“多巴胺”或“副多巴胺”,其特征是独特的临床和分子特征,这些特征共同反映了分子组装和维持这一特殊膜结构域的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
7.90%
发文量
45
审稿时长
>12 weeks
期刊介绍: The Journal of the Peripheral Nervous System is the official journal of the Peripheral Nerve Society. Founded in 1996, it is the scientific journal of choice for clinicians, clinical scientists and basic neuroscientists interested in all aspects of biology and clinical research of peripheral nervous system disorders. The Journal of the Peripheral Nervous System is a peer-reviewed journal that publishes high quality articles on cell and molecular biology, genomics, neuropathic pain, clinical research, trials, and unique case reports on inherited and acquired peripheral neuropathies. Original articles are organized according to the topic in one of four specific areas: Mechanisms of Disease, Genetics, Clinical Research, and Clinical Trials. The journal also publishes regular review papers on hot topics and Special Issues on basic, clinical, or assembled research in the field of peripheral nervous system disorders. Authors interested in contributing a review-type article or a Special Issue should contact the Editorial Office to discuss the scope of the proposed article with the Editor-in-Chief.
期刊最新文献
Vitamin D levels do not correlate with severity of idiopathic peripheral neuropathy. Knowledge gaps in diagnosing chronic polyneuropathy: Review of national guidelines. Paclitaxel alters the microvascular network in the central and peripheral nervous system of rats with chemotherapy-induced painful peripheral neuropathy. Glucose-lowering medication associated with weight loss may limit the progression of diabetic neuropathy in type 2 diabetes. Neuralgic amyotrophy presentation of acute intermittent porphyria: A case report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1