The Cardiac Na+ -Ca2+ Exchanger: From Structure to Function.

IF 4.2 2区 医学 Q1 PHYSIOLOGY Comprehensive Physiology Pub Date : 2021-12-29 DOI:10.1002/cphy.c200031
Michela Ottolia, Scott John, Adina Hazan, Joshua I Goldhaber
{"title":"The Cardiac Na<sup>+</sup> -Ca<sup>2+</sup> Exchanger: From Structure to Function.","authors":"Michela Ottolia,&nbsp;Scott John,&nbsp;Adina Hazan,&nbsp;Joshua I Goldhaber","doi":"10.1002/cphy.c200031","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup> homeostasis is essential for cell function and survival. As such, the cytosolic Ca<sup>2+</sup> concentration is tightly controlled by a wide number of specialized Ca<sup>2+</sup> handling proteins. One among them is the Na<sup>+</sup> -Ca<sup>2+</sup> exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na<sup>+</sup> to drive Ca<sup>2+</sup> out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca<sup>2+</sup> homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773166/pdf/nihms-1770930.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c200031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏Na+ -Ca2+交换器:从结构到功能。
Ca2+稳态对细胞功能和存活至关重要。因此,细胞质内Ca2+浓度受到大量专门的Ca2+处理蛋白的严格控制。其中之一是Na+ -Ca2+交换器(NCX),这是一种普遍存在的质膜转运体,利用Na+的电化学梯度将Ca2+驱逐出细胞,而不是其浓度梯度。在这一关键作用下,这种二级转运蛋白指导重要的生理过程,如Ca2+稳态、肌肉收缩、骨形成和记忆等。本文就近年来有关哺乳动物NCX结构及其与功能关系的研究进展进行综述。由于对该蛋白进行了广泛的研究,因此将特别强调哺乳动物心脏异构体NCX1.1。鉴于真核交换体之间的保守程度,本文强调的信息将为我们理解这种转运体家族提供基础。我们将讨论基因结构、选择性剪接、拓扑结构、调控机制以及NCX在心脏生理学中的功能作用。在这篇文章中,我们将试图强调该领域的重要里程碑和未来需要研究的有争议的话题。©2021美国生理学会。中国生物医学工程学报(英文版),2012。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
期刊最新文献
Maternal Microvascular Dysfunction During and After Preeclamptic Pregnancy. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Neuromuscular Transmission in a Biological Context. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Human Gut Microbiota in Cardiovascular Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1