Emma C. Johnson, Jessica E. Salvatore, Dongbing Lai, Alison K. Merikangas, John I. Nurnberger, Jay A. Tischfield, Xiaoling Xuei, Chella Kamarajan, Leah Wetherill, COGA Collaborators, John P. Rice, John R. Kramer, Samuel Kuperman, Tatiana Foroud, Paul A. Slesinger, Alison M. Goate, Bernice Porjesz, Danielle M. Dick, Howard J. Edenberg, Arpana Agrawal
{"title":"The collaborative study on the genetics of alcoholism: Genetics","authors":"Emma C. Johnson, Jessica E. Salvatore, Dongbing Lai, Alison K. Merikangas, John I. Nurnberger, Jay A. Tischfield, Xiaoling Xuei, Chella Kamarajan, Leah Wetherill, COGA Collaborators, John P. Rice, John R. Kramer, Samuel Kuperman, Tatiana Foroud, Paul A. Slesinger, Alison M. Goate, Bernice Porjesz, Danielle M. Dick, Howard J. Edenberg, Arpana Agrawal","doi":"10.1111/gbb.12856","DOIUrl":null,"url":null,"abstract":"<p>This review describes the genetic approaches and results from the family-based Collaborative Study on the Genetics of Alcoholism (COGA). COGA was designed during the linkage era to identify genes affecting the risk for alcohol use disorder (AUD) and related problems, and was among the first AUD-focused studies to subsequently adopt a genome-wide association (GWAS) approach. COGA's family-based structure, multimodal assessment with gold-standard clinical and neurophysiological data, and the availability of prospective longitudinal phenotyping continues to provide insights into the etiology of AUD and related disorders. These include investigations of genetic risk and trajectories of substance use and use disorders, phenome-wide association studies of loci of interest, and investigations of pleiotropy, social genomics, genetic nurture, and within-family comparisons. COGA is one of the few AUD genetics projects that includes a substantial number of participants of African ancestry. The sharing of data and biospecimens has been a cornerstone of the COGA project, and COGA is a key contributor to large-scale GWAS consortia. COGA's wealth of publicly available genetic and extensive phenotyping data continues to provide a unique and adaptable resource for our understanding of the genetic etiology of AUD and related traits.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/f4/GBB-22-e12856.PMC10550788.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
This review describes the genetic approaches and results from the family-based Collaborative Study on the Genetics of Alcoholism (COGA). COGA was designed during the linkage era to identify genes affecting the risk for alcohol use disorder (AUD) and related problems, and was among the first AUD-focused studies to subsequently adopt a genome-wide association (GWAS) approach. COGA's family-based structure, multimodal assessment with gold-standard clinical and neurophysiological data, and the availability of prospective longitudinal phenotyping continues to provide insights into the etiology of AUD and related disorders. These include investigations of genetic risk and trajectories of substance use and use disorders, phenome-wide association studies of loci of interest, and investigations of pleiotropy, social genomics, genetic nurture, and within-family comparisons. COGA is one of the few AUD genetics projects that includes a substantial number of participants of African ancestry. The sharing of data and biospecimens has been a cornerstone of the COGA project, and COGA is a key contributor to large-scale GWAS consortia. COGA's wealth of publicly available genetic and extensive phenotyping data continues to provide a unique and adaptable resource for our understanding of the genetic etiology of AUD and related traits.