{"title":"CaMKIIα neurons in the anterior insular cortex regulate attention behavior in mice.","authors":"Yingping Ma, Shaofei Jiang, Xin Zhao, Shen Li, Liping Chen, Zhe Zhao, Wei Shen, Yan Wu, Haitao Wu","doi":"10.3389/fncir.2023.1197541","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The insular cortex is involved in multiple physiological processes including working memory, pain, emotion, and interoceptive functions. Previous studies have indicated that the anterior insular cortex (aIC) also mediates interoceptive attention in humans. However, the exact cellular and physiological function of the aIC in the regulation of this process is still elusive.</p><p><strong>Methods: </strong>In this study, using the 5-choice serial reaction time task (5-CSRTT) testing paradigm, we assessed the role of the aIC in visuospatial attention and impulsiveness in mice.</p><p><strong>Results: </strong>The results showed a dramatic activation of c-Fos in the aIC CaMKIIα neurons after the 5-CSRTT procedure. <i>In vivo</i> fiber photometry revealed enhanced calcium signaling in aIC CaMKIIα neurons when the mice responded correctly. In addition, chemogenetic suppression of aIC CaMKIIα neurons led to increased incorrect responses within the appropriate time. Importantly, pharmacological activation of aIC CaMKIIα neurons enhanced their performance in the 5-CSRTT test.</p><p><strong>Discussion: </strong>These results provide compelling evidence that aIC CaMKIIα neurons are essential for the modulation of attentional processing in mice.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1197541"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2023.1197541","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The insular cortex is involved in multiple physiological processes including working memory, pain, emotion, and interoceptive functions. Previous studies have indicated that the anterior insular cortex (aIC) also mediates interoceptive attention in humans. However, the exact cellular and physiological function of the aIC in the regulation of this process is still elusive.
Methods: In this study, using the 5-choice serial reaction time task (5-CSRTT) testing paradigm, we assessed the role of the aIC in visuospatial attention and impulsiveness in mice.
Results: The results showed a dramatic activation of c-Fos in the aIC CaMKIIα neurons after the 5-CSRTT procedure. In vivo fiber photometry revealed enhanced calcium signaling in aIC CaMKIIα neurons when the mice responded correctly. In addition, chemogenetic suppression of aIC CaMKIIα neurons led to increased incorrect responses within the appropriate time. Importantly, pharmacological activation of aIC CaMKIIα neurons enhanced their performance in the 5-CSRTT test.
Discussion: These results provide compelling evidence that aIC CaMKIIα neurons are essential for the modulation of attentional processing in mice.
期刊介绍:
Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.