Interaction of zincite, alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol with virulence factors of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Staphylococcus aureus.
{"title":"Interaction of zincite, alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol with virulence factors of <i>Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa</i>, and <i>Staphylococcus aureus</i>.","authors":"Mehran Alavi, Morahem Ashengroph","doi":"10.1080/14787210.2023.2238123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Based on gas chromatography - mass spectrometry (GC-MS) results of a previous study, six metabolites including alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol showed significantly higher amounts relative to other metabolites.</p><p><strong>Methods: </strong>A continuation of the previous study, the interaction of these metabolites with the main virulence factors of P. aeruginosa (pseudomonas elastase and exotoxin A), Staphylococcus aureus (alpha-hemolysin and protein 2a), Mycobacterium tuberculosis (ESX-secreted protein B and the serine/threonine protein kinase), and Escherichia coli (heat-labile enterotoxin and Shiga toxin) were evaluated by molecular docking study and molecular simulation.</p><p><strong>Results: </strong>In the case of Shiga toxin, higher and lower binding affinities were related to alpha-terpinolene and zincite with values of -5.8 and -2.6 kcal/mol, respectively. For alpha-hemolysin, terpinolene and alpha-terpinolene demonstrated higher binding affinities with similar energies of -5.9 kcal/mol. Thymol and geranyl acetate showed lower binding energy of -5.7 kcal/mol toward protein 2a. Furthermore, thymol had a higher binding affinity toward heat-labile enterotoxin and ESX-secreted protein B with values of -5.9 and -6.1 kcal/mol, respectively.</p><p><strong>Conclusions: </strong>It is concluded that the availability of secondary metabolites of A. haussknechtii surrounding zinc oxide (ZnO) NPs can hinder P. aeruginosa by inactivating Pseudomonas elastase and exotoxin.</p>","PeriodicalId":12213,"journal":{"name":"Expert Review of Anti-infective Therapy","volume":" ","pages":"253-272"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Anti-infective Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14787210.2023.2238123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Based on gas chromatography - mass spectrometry (GC-MS) results of a previous study, six metabolites including alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol showed significantly higher amounts relative to other metabolites.
Methods: A continuation of the previous study, the interaction of these metabolites with the main virulence factors of P. aeruginosa (pseudomonas elastase and exotoxin A), Staphylococcus aureus (alpha-hemolysin and protein 2a), Mycobacterium tuberculosis (ESX-secreted protein B and the serine/threonine protein kinase), and Escherichia coli (heat-labile enterotoxin and Shiga toxin) were evaluated by molecular docking study and molecular simulation.
Results: In the case of Shiga toxin, higher and lower binding affinities were related to alpha-terpinolene and zincite with values of -5.8 and -2.6 kcal/mol, respectively. For alpha-hemolysin, terpinolene and alpha-terpinolene demonstrated higher binding affinities with similar energies of -5.9 kcal/mol. Thymol and geranyl acetate showed lower binding energy of -5.7 kcal/mol toward protein 2a. Furthermore, thymol had a higher binding affinity toward heat-labile enterotoxin and ESX-secreted protein B with values of -5.9 and -6.1 kcal/mol, respectively.
Conclusions: It is concluded that the availability of secondary metabolites of A. haussknechtii surrounding zinc oxide (ZnO) NPs can hinder P. aeruginosa by inactivating Pseudomonas elastase and exotoxin.
期刊介绍:
Expert Review of Anti-Infective Therapy (ISSN 1478-7210) provides expert reviews on therapeutics and diagnostics in the treatment of infectious disease. Coverage includes antibiotics, drug resistance, drug therapy, infectious disease medicine, antibacterial, antimicrobial, antifungal and antiviral approaches, and diagnostic tests.