{"title":"Development of a compressed FCN architecture for semantic segmentation using Particle Swarm Optimization.","authors":"Mohit Agarwal, Suneet K Gupta, K K Biswas","doi":"10.1007/s00521-023-08324-3","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have adapted the conventional deep learning classification networks to generate Fully Conventional Networks (FCN) for carrying out accurate semantic segmentation. However, such models are expensive both in terms of storage and inference time and not readily employable on edge devices. In this paper, a compressed version of VGG16-based Fully Convolution Network (FCN) has been developed using Particle Swarm Optimization. It has been shown that the developed model can offer tremendous saving in storage space and also faster inference time, and can be implemented on edge devices. The efficacy of the proposed approach has been tested using potato late blight leaf images from publicly available PlantVillage dataset, street scene image dataset and lungs X-Ray dataset and it has been shown that it approaches the accuracies offered by standard FCN even after 851× compression.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 16","pages":"11833-11846"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897161/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08324-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Researchers have adapted the conventional deep learning classification networks to generate Fully Conventional Networks (FCN) for carrying out accurate semantic segmentation. However, such models are expensive both in terms of storage and inference time and not readily employable on edge devices. In this paper, a compressed version of VGG16-based Fully Convolution Network (FCN) has been developed using Particle Swarm Optimization. It has been shown that the developed model can offer tremendous saving in storage space and also faster inference time, and can be implemented on edge devices. The efficacy of the proposed approach has been tested using potato late blight leaf images from publicly available PlantVillage dataset, street scene image dataset and lungs X-Ray dataset and it has been shown that it approaches the accuracies offered by standard FCN even after 851× compression.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.