Application of big data in ophthalmology.

IF 1 Q4 OPHTHALMOLOGY Taiwan Journal of Ophthalmology Pub Date : 2023-04-01 DOI:10.4103/tjo.TJO-D-23-00012
Zhi Da Soh, Ching-Yu Cheng
{"title":"Application of big data in ophthalmology.","authors":"Zhi Da Soh,&nbsp;Ching-Yu Cheng","doi":"10.4103/tjo.TJO-D-23-00012","DOIUrl":null,"url":null,"abstract":"<p><p>The advents of information technologies have led to the creation of ever-larger datasets. Also known as <i>big data</i>, these large datasets are characterized by its volume, variety, velocity, veracity, and value. More importantly, big data has the potential to expand traditional research capabilities, inform clinical practice based on real-world data, and improve the health system and service delivery. This review first identified the different sources of big data in ophthalmology, including electronic medical records, data registries, research consortia, administrative databases, and biobanks. Then, we provided an in-depth look at how big data analytics have been applied in ophthalmology for disease surveillance, and evaluation on disease associations, detection, management, and prognostication. Finally, we discussed the challenges involved in big data analytics, such as data suitability and quality, data security, and analytical methodologies.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5a/06/TJO-13-123.PMC10361443.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-23-00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The advents of information technologies have led to the creation of ever-larger datasets. Also known as big data, these large datasets are characterized by its volume, variety, velocity, veracity, and value. More importantly, big data has the potential to expand traditional research capabilities, inform clinical practice based on real-world data, and improve the health system and service delivery. This review first identified the different sources of big data in ophthalmology, including electronic medical records, data registries, research consortia, administrative databases, and biobanks. Then, we provided an in-depth look at how big data analytics have been applied in ophthalmology for disease surveillance, and evaluation on disease associations, detection, management, and prognostication. Finally, we discussed the challenges involved in big data analytics, such as data suitability and quality, data security, and analytical methodologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据在眼科中的应用。
信息技术的出现导致了越来越大的数据集的产生。这些大型数据集也被称为大数据,其特点是其数量、种类、速度、准确性和价值。更重要的是,大数据有潜力扩展传统的研究能力,根据真实世界的数据为临床实践提供信息,并改善卫生系统和服务提供。本综述首先确定了眼科大数据的不同来源,包括电子病历、数据登记、研究联盟、管理数据库和生物银行。然后,我们深入探讨了大数据分析如何应用于眼科疾病监测、疾病关联评估、检测、管理和预测。最后,我们讨论了大数据分析所面临的挑战,如数据适用性和质量、数据安全性和分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
9.10%
发文量
68
审稿时长
19 weeks
期刊最新文献
Advancing glaucoma care with big data and artificial intelligence innovations. Application of artificial intelligence in glaucoma care: An updated review. Artificial intelligence and big data integration in anterior segment imaging for glaucoma. Big data and electronic health records for glaucoma research. Big data for imaging assessment in glaucoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1