{"title":"Bacterial synthetic biology: tools for novel drug discovery.","authors":"Xiyan Wang, Nan Zhou, Baojun Wang","doi":"10.1080/17460441.2023.2239704","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bacterial synthetic biology has provided powerful tools to revolutionize the drug discovery process. These tools can be harnessed to generate bacterial novel pharmaceutical compounds with enhanced bioactivity and selectivity or to create genetically modified microorganisms as living drugs.</p><p><strong>Areas covered: </strong>This review provides a current overview of the state-of-the-art in bacterial synthetic biology tools for novel drug discovery. The authors discuss the application of these tools including bioinformatic tools, CRISPR tools, engineered bacterial transcriptional regulators, and synthetic biosensors for novel drug discovery. Additionally, the authors present the recent progress on reprogramming bacteriophages as living drugs to fight against antibiotic-resistant pathogens.</p><p><strong>Expert opinion: </strong>The field of using bacterial synthetic biology tools for drug discovery is rapidly advancing. However, challenges remain in developing reliable and robust methods to engineer bacteria. Further advancements in synthetic biology hold promise to speed up drug discovery, facilitating the development of novel therapeutics against various diseases.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2023.2239704","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Bacterial synthetic biology has provided powerful tools to revolutionize the drug discovery process. These tools can be harnessed to generate bacterial novel pharmaceutical compounds with enhanced bioactivity and selectivity or to create genetically modified microorganisms as living drugs.
Areas covered: This review provides a current overview of the state-of-the-art in bacterial synthetic biology tools for novel drug discovery. The authors discuss the application of these tools including bioinformatic tools, CRISPR tools, engineered bacterial transcriptional regulators, and synthetic biosensors for novel drug discovery. Additionally, the authors present the recent progress on reprogramming bacteriophages as living drugs to fight against antibiotic-resistant pathogens.
Expert opinion: The field of using bacterial synthetic biology tools for drug discovery is rapidly advancing. However, challenges remain in developing reliable and robust methods to engineer bacteria. Further advancements in synthetic biology hold promise to speed up drug discovery, facilitating the development of novel therapeutics against various diseases.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.