Extracting Temporal Expressions of First Seizure Onset from Epilepsy Patient Discharge Summaries.

Shiqiang Tao, Rashmie Abeysinghe, Blanca Talavera De La Esperanza, Samden Lhatoo, Guo-Qiang Zhang, Licong Cui
{"title":"Extracting Temporal Expressions of First Seizure Onset from Epilepsy Patient Discharge Summaries.","authors":"Shiqiang Tao, Rashmie Abeysinghe, Blanca Talavera De La Esperanza, Samden Lhatoo, Guo-Qiang Zhang, Licong Cui","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Early onset of seizure is a potential risk factor for Sudden Unexpected Death in Epilepsy (SUDEP). However, the first seizure onset information is often documented as clinical narratives in epilepsy monitoring unit (EMU) discharge summaries. Manually extracting first seizure onset time from discharge summaries is time consuming and labor-intensive. In this work, we developed a rule-based natural language processing pipeline for automatically extracting the temporal information of patients' first seizure onset from EMU discharge summaries. We use the Epilepsy and Seizure Ontology (EpSO) as the core knowledge resource and construct 4 extraction rules based on 300 randomly selected EMU discharge summaries. To evaluate the effectiveness of the extraction pipeline, we apply the constructed rules on another 200 unseen discharge summaries and compare the results against the manual evaluation of a domain expert. Overall, our extraction pipeline achieved a precision of 0.75, recall of 0.651, and F1-score of 0.697. This is an encouraging initial result which will allow us to gain insights into potentially better-performing approaches.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283149/pdf/2272.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early onset of seizure is a potential risk factor for Sudden Unexpected Death in Epilepsy (SUDEP). However, the first seizure onset information is often documented as clinical narratives in epilepsy monitoring unit (EMU) discharge summaries. Manually extracting first seizure onset time from discharge summaries is time consuming and labor-intensive. In this work, we developed a rule-based natural language processing pipeline for automatically extracting the temporal information of patients' first seizure onset from EMU discharge summaries. We use the Epilepsy and Seizure Ontology (EpSO) as the core knowledge resource and construct 4 extraction rules based on 300 randomly selected EMU discharge summaries. To evaluate the effectiveness of the extraction pipeline, we apply the constructed rules on another 200 unseen discharge summaries and compare the results against the manual evaluation of a domain expert. Overall, our extraction pipeline achieved a precision of 0.75, recall of 0.651, and F1-score of 0.697. This is an encouraging initial result which will allow us to gain insights into potentially better-performing approaches.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从癫痫患者出院摘要中提取首次癫痫发作的时间表达。
癫痫早期发作是癫痫意外猝死(SUDEP)的潜在风险因素。然而,首次癫痫发作的信息通常作为临床叙述记录在癫痫监护病房(EMU)的出院摘要中。从出院摘要中手动提取首次癫痫发作时间既耗时又耗力。在这项工作中,我们开发了一种基于规则的自然语言处理管道,用于自动从癫痫监护室出院摘要中提取患者首次癫痫发作的时间信息。我们使用癫痫与发作本体(EpSO)作为核心知识资源,并基于随机选取的 300 份 EMU 出院摘要构建了 4 条提取规则。为了评估提取管道的有效性,我们在另外 200 份未见过的出院摘要上应用了所构建的规则,并将结果与领域专家的人工评估结果进行了比较。总体而言,我们的提取管道达到了 0.75 的精确度、0.651 的召回率和 0.697 的 F1 分数。这是一个令人鼓舞的初步结果,有助于我们深入了解可能性能更好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1