Barbara Tomasino, Gianni De Fraja, Ilaria Guarracino, Tamara Ius, Serena D'Agostini, Miran Skrap, Raffaella Ida Rumiati
{"title":"Cognitive reserve and individual differences in brain tumour patients.","authors":"Barbara Tomasino, Gianni De Fraja, Ilaria Guarracino, Tamara Ius, Serena D'Agostini, Miran Skrap, Raffaella Ida Rumiati","doi":"10.1093/braincomms/fcad198","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the paper is to determine the effects of the cognitive reserve on brain tumour patients' cognitive functions and, specifically, if cognitive reserve helps patients cope with the negative effects of brain tumours on their cognitive functions. We retrospectively studied a large sample of around 700 patients, diagnosed with a brain tumour. Each received an MRI brain examination and performed a battery of tests measuring their cognitive abilities before they underwent neurosurgery. To account for the complexity of cognitive reserve, we construct our cognitive reserve proxy by combining three predictors of patients' cognitive performance, namely, patients' education, occupation, and the environment where they live. Our statistical analysis controls for the type, side, site, and size of the lesion, for fluid intelligence quotient, and for age and gender, in order to tease out the effect of cognitive reserve on each of these tests. Clinical neurological variables have the expected effects on cognitive functions. We find a robust positive effect of cognitive reserve on patients' cognitive performance. Moreover, we find that cognitive reserve modulates the effects of the volume of the lesion: the additional negative impact of an increase in the tumour size on patients' performance is less severe for patients with higher cognitive reserve. We also find substantial differences in these effects depending on the cerebral hemisphere where the lesion occurred and on the cognitive function considered. For several of these functions, the positive effect of cognitive reserve is stronger for patients with lesions in the left hemisphere than for patients whose lesions are in the right hemisphere. The development of prevention strategies and personalized rehabilitation interventions will benefit from our contribution to understanding the role of cognitive reserve, in addition to that of neurological variables, as one of the factors determining the patients' individual differences in cognitive performance caused by brain tumours.</p>","PeriodicalId":9318,"journal":{"name":"Brain Communications","volume":"5 4","pages":"fcad198"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcad198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the paper is to determine the effects of the cognitive reserve on brain tumour patients' cognitive functions and, specifically, if cognitive reserve helps patients cope with the negative effects of brain tumours on their cognitive functions. We retrospectively studied a large sample of around 700 patients, diagnosed with a brain tumour. Each received an MRI brain examination and performed a battery of tests measuring their cognitive abilities before they underwent neurosurgery. To account for the complexity of cognitive reserve, we construct our cognitive reserve proxy by combining three predictors of patients' cognitive performance, namely, patients' education, occupation, and the environment where they live. Our statistical analysis controls for the type, side, site, and size of the lesion, for fluid intelligence quotient, and for age and gender, in order to tease out the effect of cognitive reserve on each of these tests. Clinical neurological variables have the expected effects on cognitive functions. We find a robust positive effect of cognitive reserve on patients' cognitive performance. Moreover, we find that cognitive reserve modulates the effects of the volume of the lesion: the additional negative impact of an increase in the tumour size on patients' performance is less severe for patients with higher cognitive reserve. We also find substantial differences in these effects depending on the cerebral hemisphere where the lesion occurred and on the cognitive function considered. For several of these functions, the positive effect of cognitive reserve is stronger for patients with lesions in the left hemisphere than for patients whose lesions are in the right hemisphere. The development of prevention strategies and personalized rehabilitation interventions will benefit from our contribution to understanding the role of cognitive reserve, in addition to that of neurological variables, as one of the factors determining the patients' individual differences in cognitive performance caused by brain tumours.