Development and validation of HPLC method for simultaneous estimation of erlotinib and niclosamide from liposomes optimized by screening design.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2023-09-01 DOI:10.1080/08982104.2022.2162540
Amruta Prabhakar Padakanti, Sachin Dattaram Pawar, Pramod Kumar, Naveen Chella
{"title":"Development and validation of HPLC method for simultaneous estimation of erlotinib and niclosamide from liposomes optimized by screening design.","authors":"Amruta Prabhakar Padakanti,&nbsp;Sachin Dattaram Pawar,&nbsp;Pramod Kumar,&nbsp;Naveen Chella","doi":"10.1080/08982104.2022.2162540","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). <i>In vitro</i> release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2022.2162540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). In vitro release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
筛选设计优化的厄洛替尼和氯硝柳胺脂质体HPLC同时测定方法的建立与验证。
对已批准的一线药物治疗的新出现的耐药性导致癌症的临床失败。药物再利用研究发现了许多用于癌症治疗的旧药物。改用途药物(氯硝柳胺)与厄洛替尼等一线治疗药物联合使用,通过抑制厄洛替尼获得性耐药,疗效得到改善。但是,需要开发一种灵敏、准确、优秀的分析方法和给药系统,以成功地递送药物组合。本研究建立并验证了同时测定盐酸厄洛替尼和氯硝柳胺的高效液相色谱法。氯硝柳胺和盐酸厄洛替尼在333 nm的保留时间分别为6.48和7.65 min。该方法对两种药物的分离具有较好的准确性、精密度、鲁棒性和耐用性。采用Plackett-Burman (PBD)筛选设计,以粒径、粒径分布、zeta电位和包封效率为响应,确定影响脂质体配方开发的关键参数。脂质浓度、药物浓度、水化温度和介质体积是影响脂质体粒径、PDI、ZP和%EE的关键参数。优化后的NCM-ERL脂质体的粒径(126.05±2.1),PDI(0.498±0.1),ZP(-16.2±0.3),EE %(50.04±2.8和05.42±1.3)。体外释放试验表明,载药脂质体24 h控释率分别为87.06±9.93%和42.33±0.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1