{"title":"Functions of Circular RNA in Human Diseases and Illnesses.","authors":"Alison Gu, Dabbu Kumar Jaijyan, Shaomin Yang, Mulan Zeng, Shaokai Pei, Hua Zhu","doi":"10.3390/ncrna9040038","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366867/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna9040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.