Biosensor Assays Types and Their Roles Toward Ligand-Receptor Interactions in Drug Discovery.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Assay and drug development technologies Pub Date : 2023-07-01 DOI:10.1089/adt.2023.003
Garima Gupta, Kanupriya Jha, Sarika Chaudhary
{"title":"Biosensor Assays Types and Their Roles Toward Ligand-Receptor Interactions in Drug Discovery.","authors":"Garima Gupta,&nbsp;Kanupriya Jha,&nbsp;Sarika Chaudhary","doi":"10.1089/adt.2023.003","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand-receptor interactions (LRIs) are the basis for all the biological processes taking place in living cells and have been exploited to develop and implement in medical field a number of highly sensitive biosensors for the detection of various biomarkers in complex biological fluids. Drug-target interactions, one of the LRIs, are important to understand the biological processes that further help in developing new and better therapeutic molecules. Biosensors based on these interactions give us an idea for the need of modification of existing drugs or to develop new drugs. Common approach to develop biosensors requires the labeling; however, label-free systems provide advantages in avoiding the chances of conformational changes, off-site labeling, and labeling-based hindrances, thus saving time and effort toward assay development. Preliminary drug screening assays are carried out in two-dimensional (2D) models, followed by animal models, which require huge capital investment to reach from bench-top to clinical trials, where only 21% of new compounds make way to phase-1 clinical trials. Three-dimensional culture or organoid culture or organ-on-chip technology has made way for predictive and complex <i>in vitro</i> approach that recapitulates human physiology and represents more similar <i>in vivo</i> behavior than 2D. Multiplexing and nanotechnology have remarkably enhanced the efficacy of biosensors and might lead to a generation of miniaturized biosensors and more than just point-of-care kits. This review provides in-depth analysis of different types of biosensor assays based on drug-target interactions, their advantages, and limitations based on cost, sensitivity, and selectivity and industrial applications.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"190-201"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Ligand-receptor interactions (LRIs) are the basis for all the biological processes taking place in living cells and have been exploited to develop and implement in medical field a number of highly sensitive biosensors for the detection of various biomarkers in complex biological fluids. Drug-target interactions, one of the LRIs, are important to understand the biological processes that further help in developing new and better therapeutic molecules. Biosensors based on these interactions give us an idea for the need of modification of existing drugs or to develop new drugs. Common approach to develop biosensors requires the labeling; however, label-free systems provide advantages in avoiding the chances of conformational changes, off-site labeling, and labeling-based hindrances, thus saving time and effort toward assay development. Preliminary drug screening assays are carried out in two-dimensional (2D) models, followed by animal models, which require huge capital investment to reach from bench-top to clinical trials, where only 21% of new compounds make way to phase-1 clinical trials. Three-dimensional culture or organoid culture or organ-on-chip technology has made way for predictive and complex in vitro approach that recapitulates human physiology and represents more similar in vivo behavior than 2D. Multiplexing and nanotechnology have remarkably enhanced the efficacy of biosensors and might lead to a generation of miniaturized biosensors and more than just point-of-care kits. This review provides in-depth analysis of different types of biosensor assays based on drug-target interactions, their advantages, and limitations based on cost, sensitivity, and selectivity and industrial applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物传感器检测类型及其在药物发现中配体-受体相互作用中的作用。
配体-受体相互作用(LRIs)是在活细胞中发生的所有生物过程的基础,并已被用于在医学领域开发和实施许多高灵敏度的生物传感器,用于检测复杂生物流体中的各种生物标志物。药物-靶标相互作用是LRIs中的一种,对于理解生物过程非常重要,从而进一步帮助开发新的更好的治疗分子。基于这些相互作用的生物传感器为我们提供了对现有药物进行修改或开发新药的需求。开发生物传感器的常用方法需要标签;然而,无标签系统在避免构象变化,非现场标记和基于标记的障碍的机会方面提供了优势,从而节省了分析开发的时间和精力。初步的药物筛选分析是在二维(2D)模型中进行的,然后是动物模型,这需要大量的资金投入才能从实验台进入临床试验,其中只有21%的新化合物进入第一阶段临床试验。三维培养或类器官培养或器官芯片技术为预测和复杂的体外方法铺平了道路,这些方法概括了人类生理学,并代表了比二维更相似的体内行为。多路复用和纳米技术显著提高了生物传感器的功效,并可能导致一代小型化生物传感器的出现,而不仅仅是即时护理套件。本文综述了基于药物-靶标相互作用的不同类型的生物传感器分析方法,它们的优势,以及基于成本、灵敏度、选择性和工业应用的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
期刊最新文献
Enhanced Anticancer Efficiency of Curcumin Co-Loaded Lawsone Solid Lipid Nanoparticles Against MCF-7 Breast Cancer Cell Lines: Optimization by Statistical JMP Software-Based Experimental Approach. Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer. Protective Effects of Schizochytrium Microalgal Fatty Acids on Alcoholic Liver Disease: A Network Pharmacology and In Vivo Study. In Vitro Antiviral Assays: A Review of Laboratory Methods. In Silico Screening of Phytochemicals as Potential Inhibitors of the JAK/STATs Pathway in Psoriasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1