Maria Isabel Fuentes-Merlos, Masaru Bamba, Shusei Sato, Atsushi Higashitani
{"title":"Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants.","authors":"Maria Isabel Fuentes-Merlos, Masaru Bamba, Shusei Sato, Atsushi Higashitani","doi":"10.1093/dnares/dsad016","DOIUrl":null,"url":null,"abstract":"<p><p>Grafting is widely used as a method to increase stress tolerance in good fruiting lines of Solanaceae plants. However, little is known about how grafting, affects epigenetic modifications and leads to stress tolerance, especially within the same line. Here, we studied the effects of self-grafting in tomato plants on histone and DNA modifications and changes in gene expression related to drought stress. We found that at the three-leaf stage, 1 week after self-grafting, histone H3 K4 trimethylation and K27 trimethylation changes were observed in more than 500 genes each, and DNA methylation changes in more than 5,000 gene regions at the shoot apex compared to the non-grafted control. In addition, two weeks after the epigenomic changes, global expression changes continued to be observed at the shoot apex in several genes related to the metabolic process of nitrogen compounds, responses to stimulus, chromosome organization, cell cycle-related genes, and regulation of hormone levels. Finally, these grafted seedlings acquired remarkable drought tolerance, suggesting that epigenomic modifications during the wound-healing process mitigate stress tolerance in tomato plants.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"30 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsad016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Grafting is widely used as a method to increase stress tolerance in good fruiting lines of Solanaceae plants. However, little is known about how grafting, affects epigenetic modifications and leads to stress tolerance, especially within the same line. Here, we studied the effects of self-grafting in tomato plants on histone and DNA modifications and changes in gene expression related to drought stress. We found that at the three-leaf stage, 1 week after self-grafting, histone H3 K4 trimethylation and K27 trimethylation changes were observed in more than 500 genes each, and DNA methylation changes in more than 5,000 gene regions at the shoot apex compared to the non-grafted control. In addition, two weeks after the epigenomic changes, global expression changes continued to be observed at the shoot apex in several genes related to the metabolic process of nitrogen compounds, responses to stimulus, chromosome organization, cell cycle-related genes, and regulation of hormone levels. Finally, these grafted seedlings acquired remarkable drought tolerance, suggesting that epigenomic modifications during the wound-healing process mitigate stress tolerance in tomato plants.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.