{"title":"Enhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and HAR-images.","authors":"Gianni D'Angelo, Francesco Palmieri","doi":"10.1007/s00521-021-05913-y","DOIUrl":null,"url":null,"abstract":"<p><p>With the emergence of COVID-19, mobile health applications have increasingly become crucial in contact tracing, information dissemination, and pandemic control in general. Apps warn users if they have been close to an infected person for sufficient time, and therefore potentially at risk. The distance measurement accuracy heavily affects the probability estimation of being infected. Most of these applications make use of the electromagnetic field produced by Bluetooth Low Energy technology to estimate the distance. Nevertheless, radio interference derived from numerous factors, such as crowding, obstacles, and user activity can lead to wrong distance estimation, and, in turn, to wrong decisions. Besides, most of the social distance-keeping criteria recognized worldwide plan to keep a different distance based on the activity of the person and on the surrounding environment. In this study, in order to enhance the performance of the COVID-19 tracking apps, a human activity classifier based on Convolutional Deep Neural Network is provided. In particular, the raw data coming from the accelerometer sensor of a smartphone are arranged to form an image including several channels (HAR-Image), which is used as fingerprints of the in-progress activity that can be used as an additional input by tracking applications. Experimental results, obtained by analyzing real data, have shown that the HAR-Images are effective features for human activity recognition. Indeed, the results on the k-fold cross-validation and obtained by using a real dataset achieved an accuracy very close to 100%.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 19","pages":"13861-13877"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-05913-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the emergence of COVID-19, mobile health applications have increasingly become crucial in contact tracing, information dissemination, and pandemic control in general. Apps warn users if they have been close to an infected person for sufficient time, and therefore potentially at risk. The distance measurement accuracy heavily affects the probability estimation of being infected. Most of these applications make use of the electromagnetic field produced by Bluetooth Low Energy technology to estimate the distance. Nevertheless, radio interference derived from numerous factors, such as crowding, obstacles, and user activity can lead to wrong distance estimation, and, in turn, to wrong decisions. Besides, most of the social distance-keeping criteria recognized worldwide plan to keep a different distance based on the activity of the person and on the surrounding environment. In this study, in order to enhance the performance of the COVID-19 tracking apps, a human activity classifier based on Convolutional Deep Neural Network is provided. In particular, the raw data coming from the accelerometer sensor of a smartphone are arranged to form an image including several channels (HAR-Image), which is used as fingerprints of the in-progress activity that can be used as an additional input by tracking applications. Experimental results, obtained by analyzing real data, have shown that the HAR-Images are effective features for human activity recognition. Indeed, the results on the k-fold cross-validation and obtained by using a real dataset achieved an accuracy very close to 100%.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.