Impact of Single-Time-Point Estimates of 177Lu-PRRT Absorbed Doses on Patient Management: Validation of a Trained Multiple-Linear-Regression Model in 159 Patients and 477 Therapy Cycles.
Alexandre Chicheportiche, Moshe Sason, Mahmoud Zidan, Jeremy Godefroy, Yodphat Krausz, David J Gross, Simona Grozinsky-Glasberg, Simona Ben-Haim
{"title":"Impact of Single-Time-Point Estimates of <sup>177</sup>Lu-PRRT Absorbed Doses on Patient Management: Validation of a Trained Multiple-Linear-Regression Model in 159 Patients and 477 Therapy Cycles.","authors":"Alexandre Chicheportiche, Moshe Sason, Mahmoud Zidan, Jeremy Godefroy, Yodphat Krausz, David J Gross, Simona Grozinsky-Glasberg, Simona Ben-Haim","doi":"10.2967/jnumed.122.264923","DOIUrl":null,"url":null,"abstract":"<p><p>Dosimetry after <sup>177</sup>Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) enables estimation of radiation doses absorbed by normal organs and target lesions. This process is time-consuming and requires multiple posttreatment studies on several subsequent days. In a previous study, we described a newly developed multiple-linear-regression model to predict absorbed doses (ADs) from a single-time-point (STP) posttreatment study acquired 168 h after the first infusion and 24 h after the following ones, with similar results to the standard multiple-time-point (MTP) protocol. The present study aimed to validate this model in a large patient cohort and to assess whether STP dosimetry affects patient management decisions compared with our MTP protocol. <b>Methods:</b> Quantitative <sup>177</sup>Lu-DOTATATE SPECT/CT post-PRRT data from 159 consecutive patients (172 therapies, 477 therapy cycles) were retrospectively analyzed. ADs obtained from an STP model were compared with those obtained using an MTP model. We evaluated the impact of the STP model on the decision on whether PRRT should be stopped because of an expected kidney AD exceeding the safety threshold. We hypothesized that patient management based on the STP model does not differ from that based on the MTP model in at least 90% of the cases. <b>Results:</b> There was no difference in management decisions between the MTP and STP models in 170 of 172 therapies (98.8%). A Fisher χ<sup>2</sup> test for combined probabilities produced a composite <i>P</i> value of 0.0003. Mean cumulative AD relative differences between the STP and MTP models were 0.8% ± 8.0%, -7.7% ± 4.8%, 0.0% ± 11.4%, -2.8% ± 6.3%, and -2.1% ± 18.4% for kidneys, bone marrow, liver, spleen, and tumors, respectively (Pearson <i>r</i> = 0.99 for all), for patients who underwent 4 therapy cycles. Similar results were obtained with fewer therapy cycles. <b>Conclusion:</b> Estimated radiation ADs and patient management decisions were similar with the STP and MTP models. The STP model can simplify the dosimetry process while also reducing scanner and staff time and improving patient comfort.</p>","PeriodicalId":16758,"journal":{"name":"Journal of Nuclear Medicine","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2967/jnumed.122.264923","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Dosimetry after 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) enables estimation of radiation doses absorbed by normal organs and target lesions. This process is time-consuming and requires multiple posttreatment studies on several subsequent days. In a previous study, we described a newly developed multiple-linear-regression model to predict absorbed doses (ADs) from a single-time-point (STP) posttreatment study acquired 168 h after the first infusion and 24 h after the following ones, with similar results to the standard multiple-time-point (MTP) protocol. The present study aimed to validate this model in a large patient cohort and to assess whether STP dosimetry affects patient management decisions compared with our MTP protocol. Methods: Quantitative 177Lu-DOTATATE SPECT/CT post-PRRT data from 159 consecutive patients (172 therapies, 477 therapy cycles) were retrospectively analyzed. ADs obtained from an STP model were compared with those obtained using an MTP model. We evaluated the impact of the STP model on the decision on whether PRRT should be stopped because of an expected kidney AD exceeding the safety threshold. We hypothesized that patient management based on the STP model does not differ from that based on the MTP model in at least 90% of the cases. Results: There was no difference in management decisions between the MTP and STP models in 170 of 172 therapies (98.8%). A Fisher χ2 test for combined probabilities produced a composite P value of 0.0003. Mean cumulative AD relative differences between the STP and MTP models were 0.8% ± 8.0%, -7.7% ± 4.8%, 0.0% ± 11.4%, -2.8% ± 6.3%, and -2.1% ± 18.4% for kidneys, bone marrow, liver, spleen, and tumors, respectively (Pearson r = 0.99 for all), for patients who underwent 4 therapy cycles. Similar results were obtained with fewer therapy cycles. Conclusion: Estimated radiation ADs and patient management decisions were similar with the STP and MTP models. The STP model can simplify the dosimetry process while also reducing scanner and staff time and improving patient comfort.
期刊介绍:
The Journal of Nuclear Medicine (JNM), self-published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), provides readers worldwide with clinical and basic science investigations, continuing education articles, reviews, employment opportunities, and updates on practice and research. In the 2022 Journal Citation Reports (released in June 2023), JNM ranked sixth in impact among 203 medical journals worldwide in the radiology, nuclear medicine, and medical imaging category.