{"title":"Genome-wide identification of the C2H2-Zinc finger gene family and functional validation of CsZFP7 in citrus nucellar embryogenesis.","authors":"Hui-Hui Jia, Yuan-Tao Xu, Zhu-Jun Yin, Mei Qing, Kai-Dong Xie, Wen-Wu Guo, Xiao-Meng Wu","doi":"10.1007/s00497-023-00470-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-023-00470-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Key message: Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.