Hassan Zaman, Aakif Khan, Khalid Khan, Shazma Toheed, Muhammad Abdullah, Hafiz Muhammad Zeeshan, Abdul Hameed, Muhammad Umar, Muhammad Shahid, Kausar Malik, Samia Afzal
{"title":"Adeno-Associated Virus-Mediated Gene Therapy.","authors":"Hassan Zaman, Aakif Khan, Khalid Khan, Shazma Toheed, Muhammad Abdullah, Hafiz Muhammad Zeeshan, Abdul Hameed, Muhammad Umar, Muhammad Shahid, Kausar Malik, Samia Afzal","doi":"10.1615/CritRevEukaryotGeneExpr.2023048135","DOIUrl":null,"url":null,"abstract":"<p><p>Choice of vector is the most critical step in gene therapy. Adeno-associated viruses (AAV); third generation vectors, are getting much attention of scientists to be used as vehicles due to their non-pathogenicity, excellent safety profile, low immune responses, great efficiency to transduce non-dividing cells, large capacity to transfer genetic material and long-term expression of genetic payload. AAVs have multiple serotypes and each serotype shows tropism for a specific cell. Different serotypes are used to target liver, lungs, muscles, retina, heart, CNS, kidneys, etc. Furthermore, AAV based gene therapies have tremendous marketing applications that can be perfectly incorporated in the anticipated sites of the host target genome resulting in life long expression of transgenes. Some therapeutic products use AAV vectors that are used to treat lipoprotein lipase deficiency (LPLD) and it is injected intramuscularly, to treat mutated retinal pigment epithelium RPE65 (RPE65) that is introduced to subretinal space, an intravenous infusion to treat spinal muscular atrophy and rAAV2-CFTR vector is introduced into nasal epithelial cells to treat cystic fibrosis. AAV therapies and other such interdisciplinary methodologies can create the miracles for the generation of precision gene therapies for the treatment of most serious and sometimes fatal disorders.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 6","pages":"87-100"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023048135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Choice of vector is the most critical step in gene therapy. Adeno-associated viruses (AAV); third generation vectors, are getting much attention of scientists to be used as vehicles due to their non-pathogenicity, excellent safety profile, low immune responses, great efficiency to transduce non-dividing cells, large capacity to transfer genetic material and long-term expression of genetic payload. AAVs have multiple serotypes and each serotype shows tropism for a specific cell. Different serotypes are used to target liver, lungs, muscles, retina, heart, CNS, kidneys, etc. Furthermore, AAV based gene therapies have tremendous marketing applications that can be perfectly incorporated in the anticipated sites of the host target genome resulting in life long expression of transgenes. Some therapeutic products use AAV vectors that are used to treat lipoprotein lipase deficiency (LPLD) and it is injected intramuscularly, to treat mutated retinal pigment epithelium RPE65 (RPE65) that is introduced to subretinal space, an intravenous infusion to treat spinal muscular atrophy and rAAV2-CFTR vector is introduced into nasal epithelial cells to treat cystic fibrosis. AAV therapies and other such interdisciplinary methodologies can create the miracles for the generation of precision gene therapies for the treatment of most serious and sometimes fatal disorders.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.