Basic considerations on the practical method for predicting sound insulation performance of a single-leaf window.

Yohei Tsukamoto, Kimihiro Sakagami, Takeshi Okuzono, Yoshihiro Tomikawa
{"title":"Basic considerations on the practical method for predicting sound insulation performance of a single-leaf window.","authors":"Yohei Tsukamoto,&nbsp;Kimihiro Sakagami,&nbsp;Takeshi Okuzono,&nbsp;Yoshihiro Tomikawa","doi":"10.14324/111.444/ucloe.000018","DOIUrl":null,"url":null,"abstract":"<p><p>As a basic study of a practical method for predicting the sound insulation performance of windows, this report presents a study of the sound reduction index of windows with single glazing, below a critical frequency. First, the results calculated by an existing theory for a single plate for the sound reduction indices are compared with measured results of actual windows to assess the theory's applicability for evaluating the sound insulation performance of windows. Then, a regression analysis is employed to measure the results of a certain number of actual windows to explore a further development of a more practical prediction. The following findings were obtained: (1) Sound reduction indices of actual fixed windows are predictable using Sewell's transmission theory for a single plate. However, sound reduction indices of openable windows, especially those of sliding windows, are strongly affected by gaps in the window frame. Therefore, predicting sound reduction indices of all windows accurately is difficult if using only one theory. (2) The frequency slope of the window reduction index is much lower than that of the mass law. Regression analyses indicate that the frequency slope of the reduction index of all examined windows is 3.0 dB per octave, on average.</p>","PeriodicalId":75271,"journal":{"name":"UCL open environment","volume":"3 ","pages":"e018"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208327/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UCL open environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14324/111.444/ucloe.000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As a basic study of a practical method for predicting the sound insulation performance of windows, this report presents a study of the sound reduction index of windows with single glazing, below a critical frequency. First, the results calculated by an existing theory for a single plate for the sound reduction indices are compared with measured results of actual windows to assess the theory's applicability for evaluating the sound insulation performance of windows. Then, a regression analysis is employed to measure the results of a certain number of actual windows to explore a further development of a more practical prediction. The following findings were obtained: (1) Sound reduction indices of actual fixed windows are predictable using Sewell's transmission theory for a single plate. However, sound reduction indices of openable windows, especially those of sliding windows, are strongly affected by gaps in the window frame. Therefore, predicting sound reduction indices of all windows accurately is difficult if using only one theory. (2) The frequency slope of the window reduction index is much lower than that of the mass law. Regression analyses indicate that the frequency slope of the reduction index of all examined windows is 3.0 dB per octave, on average.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测单叶窗隔声性能实用方法的基本思考。
作为预测窗户隔声性能的实用方法的基础研究,本报告研究了低于临界频率的单层玻璃窗户的隔声指数。首先,将现有理论计算的单层窗隔声指标与实际窗的实测结果进行比较,以评估该理论对窗隔声性能评价的适用性。然后,采用回归分析来测量一定数量的实际窗口的结果,以探索进一步发展更实际的预测。结果表明:(1)利用Sewell的透射理论可以预测实际固定窗的减声指标。而可开窗,尤其是推拉窗的减声指标受窗框间隙的影响较大。因此,如果只使用一种理论,很难准确预测所有窗口的减声指数。(2)窗缩指数的频率斜率远低于质量定律的频率斜率。回归分析表明,所有检测窗口的衰减指数的频率斜率平均为3.0 dB /倍频程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊最新文献
Procedural justice and (in)equitable participation in climate negotiations. Miniaturisation of the Daphnia magna immobilisation assay for the reliable testing of low volume samples. A virtual global carbon price is essential to drive rapid decarbonisation. Urinary arsenic species and birth outcomes in Tacna, Peru, 2019: a prospective cohort study. Hydrophobic treatments and their application with internal wall insulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1