Sucharita Sambashivaiah, Mark Cope, Ratna Mukherjea, Sumithra Selvam, Nivya George, Rebecca Kuriyan, Anura V Kurpad
{"title":"The Effect of Soy and Whey Protein Supplementation on Glucose Homeostasis in Healthy Normal Weight Asian Indians.","authors":"Sucharita Sambashivaiah, Mark Cope, Ratna Mukherjea, Sumithra Selvam, Nivya George, Rebecca Kuriyan, Anura V Kurpad","doi":"10.1155/2023/2622057","DOIUrl":null,"url":null,"abstract":"<p><p>Milk and legumes are good source of protein foods used to sustain muscle mass, but their effects on postprandial glucose homeostasis and energy metabolism may be different. This is relevant, for example, in the dietetic response to obesity or diabetes, where the intake of high-quality protein is often increased significantly. The objective of this study was to characterize the acute effect of whey and soy protein (15% vs. 30%) on glucose homeostasis, energy metabolism, and satiety. Healthy, normal body mass index (BMI) Indian adult males aged 20-35 years (<i>n</i> = 15) received 4 test meals (2 proteins (soy vs. whey) and 2 doses (15% vs. 30% protein: energy ratio)). Blood samples were collected serially after the meal to calculate the incremental area under the curve for plasma glucose and insulin. Energy expenditure and substrate oxidation were measured after the meal. Satiety was measured with a visual analogue scale. The insulin response, represented by the incremental area under the curve, was significantly higher for the 30% whey compared to the 30% soy protein meal (<i>p</i> < 0.01) but was not significantly different between the 15% protein doses. There were no differences in the plasma glucose response across protein sources or doses. The mean peak fat and carbohydrate oxidation, satiety, and energy expenditure did not differ between the protein sources and doses. In conclusion, at higher doses, whey protein has a greater insulinogenic response, compared to soy protein, and exhibits a dose-response effect. However, at lower doses, whey and soy protein elicit similar insulinogenic responses, making them equally effective protein sources in relation to glucose homoeostasis.</p>","PeriodicalId":16587,"journal":{"name":"Journal of Nutrition and Metabolism","volume":"2023 ","pages":"2622057"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition and Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2622057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Milk and legumes are good source of protein foods used to sustain muscle mass, but their effects on postprandial glucose homeostasis and energy metabolism may be different. This is relevant, for example, in the dietetic response to obesity or diabetes, where the intake of high-quality protein is often increased significantly. The objective of this study was to characterize the acute effect of whey and soy protein (15% vs. 30%) on glucose homeostasis, energy metabolism, and satiety. Healthy, normal body mass index (BMI) Indian adult males aged 20-35 years (n = 15) received 4 test meals (2 proteins (soy vs. whey) and 2 doses (15% vs. 30% protein: energy ratio)). Blood samples were collected serially after the meal to calculate the incremental area under the curve for plasma glucose and insulin. Energy expenditure and substrate oxidation were measured after the meal. Satiety was measured with a visual analogue scale. The insulin response, represented by the incremental area under the curve, was significantly higher for the 30% whey compared to the 30% soy protein meal (p < 0.01) but was not significantly different between the 15% protein doses. There were no differences in the plasma glucose response across protein sources or doses. The mean peak fat and carbohydrate oxidation, satiety, and energy expenditure did not differ between the protein sources and doses. In conclusion, at higher doses, whey protein has a greater insulinogenic response, compared to soy protein, and exhibits a dose-response effect. However, at lower doses, whey and soy protein elicit similar insulinogenic responses, making them equally effective protein sources in relation to glucose homoeostasis.
期刊介绍:
Journal of Nutrition and Metabolism is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering the broad and multidisciplinary field of human nutrition and metabolism. The journal welcomes submissions on studies related to obesity, diabetes, metabolic syndrome, molecular and cellular biology of nutrients, foods and dietary supplements, as well as macro- and micronutrients including vitamins and minerals.