Yue Qin, Xiaonan Zhang, Yulei Chen, Wan Zhang, Shasha Du, Chen Ren
{"title":"Prognostic Analysis of a Hypoxia-Associated lncRNA Signature in Glioblastoma and its Pan-Cancer Landscape.","authors":"Yue Qin, Xiaonan Zhang, Yulei Chen, Wan Zhang, Shasha Du, Chen Ren","doi":"10.1055/a-2070-3715","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Hypoxia is an important clinical feature of glioblastoma (GBM), which regulates a variety of tumor processes and is inseparable from radiotherapy. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are strongly associated with survival outcomes in GBM patients and modulate hypoxia-induced tumor processes. Therefore, the aim of this study was to establish a hypoxia-associated lncRNAs (HALs) prognostic model to predict survival outcomes in GBM patients.</p><p><strong>Methods: </strong> LncRNAs in GBM samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signature Database. Co-expression analysis of differentially expressed lncRNAs and hypoxia-related genes in GBM samples was performed to determine HALs. Six optimal lncRNAs were selected for building HALs models by univariate Cox regression analysis.</p><p><strong>Results: </strong> The prediction model has a good predictive effect on the prognosis of GBM patients. Meanwhile, <i>LINC00957</i> among the six lncRNAs was selected and subjected to pan-cancer landscape analysis.</p><p><strong>Conclusion: </strong> Taken together, our findings suggest that the HALs assessment model can be used to predict the prognosis of GBM patients. In addition, LINC00957 included in the model may be a useful target to study the mechanism of cancer development and design individualized treatment strategies.</p>","PeriodicalId":16544,"journal":{"name":"Journal of neurological surgery. Part A, Central European neurosurgery","volume":" ","pages":"378-388"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurological surgery. Part A, Central European neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2070-3715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hypoxia is an important clinical feature of glioblastoma (GBM), which regulates a variety of tumor processes and is inseparable from radiotherapy. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are strongly associated with survival outcomes in GBM patients and modulate hypoxia-induced tumor processes. Therefore, the aim of this study was to establish a hypoxia-associated lncRNAs (HALs) prognostic model to predict survival outcomes in GBM patients.
Methods: LncRNAs in GBM samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signature Database. Co-expression analysis of differentially expressed lncRNAs and hypoxia-related genes in GBM samples was performed to determine HALs. Six optimal lncRNAs were selected for building HALs models by univariate Cox regression analysis.
Results: The prediction model has a good predictive effect on the prognosis of GBM patients. Meanwhile, LINC00957 among the six lncRNAs was selected and subjected to pan-cancer landscape analysis.
Conclusion: Taken together, our findings suggest that the HALs assessment model can be used to predict the prognosis of GBM patients. In addition, LINC00957 included in the model may be a useful target to study the mechanism of cancer development and design individualized treatment strategies.
期刊介绍:
The Journal of Neurological Surgery Part A: Central European Neurosurgery (JNLS A) is a major publication from the world''s leading publisher in neurosurgery. JNLS A currently serves as the official organ of several national neurosurgery societies.
JNLS A is a peer-reviewed journal publishing original research, review articles, and technical notes covering all aspects of neurological surgery. The focus of JNLS A includes microsurgery as well as the latest minimally invasive techniques, such as stereotactic-guided surgery, endoscopy, and endovascular procedures. JNLS A covers purely neurosurgical topics.