Spin selection in atomic-level chiral metal oxide for photocatalysis.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2023-07-28 DOI:10.1038/s41467-023-40367-x
Minhua Ai, Lun Pan, Chengxiang Shi, Zhen-Feng Huang, Xiangwen Zhang, Wenbo Mi, Ji-Jun Zou
{"title":"Spin selection in atomic-level chiral metal oxide for photocatalysis.","authors":"Minhua Ai,&nbsp;Lun Pan,&nbsp;Chengxiang Shi,&nbsp;Zhen-Feng Huang,&nbsp;Xiangwen Zhang,&nbsp;Wenbo Mi,&nbsp;Ji-Jun Zou","doi":"10.1038/s41467-023-40367-x","DOIUrl":null,"url":null,"abstract":"<p><p>The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O<sub>2</sub> production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382512/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-023-40367-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子级手性金属氧化物光催化的自旋选择。
自旋自由度是提高光催化载流子动力学和表面反应动力学的重要参数。研究表明,ZnO的手性结构可以诱导自旋选择性效应,从而提高光催化性能。以手性蛋氨酸分子为对称性破缺剂合成的ZnO晶体具有层次手性。磁圆二色性光谱和磁导探针原子力显微测量表明,手性结构在光致载流子中起自旋过滤器的作用,并诱导自旋极化。极化载流子不仅具有较长的载流子寿命,而且在反应过程中增加了三重态副产物而不是单重态副产物。因此,与非手性ZnO相比,左手性和右手性ZnO的光催化O2生成活性分别高2.0倍和1.9倍,污染物光降解活性分别高2.5倍和2.0倍。这项工作为操纵金属氧化物中电子自旋相关氧化还原催化的自旋特性提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-parametric protein maps reveal the spatial organization in early-developing human lung Innate immune control of influenza virus interspecies adaptation via IFITM3 Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins A large-scale examination of inductive biases shaping high-level visual representation in brains and machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1