The SARS-CoV-2 Spike Protein Mutation Explorer: using an interactive application to improve the public understanding of SARS-CoV-2 variants of concern.
Sarah Iannucci, William T Harvey, Joseph Hughes, David L Robertson, Matthieu Poyade, Edward Hutchinson
{"title":"The SARS-CoV-2 Spike Protein Mutation Explorer: using an interactive application to improve the public understanding of SARS-CoV-2 variants of concern.","authors":"Sarah Iannucci, William T Harvey, Joseph Hughes, David L Robertson, Matthieu Poyade, Edward Hutchinson","doi":"10.1080/17453054.2023.2237087","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the COVID-19 pandemic the virus responsible, SARS-CoV-2, became a source of intense interest for non-expert audiences. The viral spike protein gained particular public interest as the main target for protective immune responses, including those elicited by vaccines. The rapid evolution of SARS-CoV-2 resulted in variations in the spike that enhanced transmissibility or weakened vaccine protection. This created new variants of concern (VOCs). The emergence of VOCs was studied using viral sequence data which was shared through portals such as the online Mutation Explorer of the COVID-19 Genomics UK consortium (COG-UK/ME). This was designed for an expert audience, but the information it contained could be of general interest if suitably communicated. Visualisations, interactivity and animation can improve engagement and understanding of molecular biology topics, and so we developed a graphical educational resource, the SARS-CoV-2 Spike Protein Mutation Explorer (SSPME), which used interactive 3D molecular models and animations to explain the molecular biology underpinning VOCs. User testing showed that the SSPME had better usability and improved participant knowledge confidence and knowledge acquisition compared to COG-UK/ME. This demonstrates how interactive visualisations can be used for effective molecular biology communication, as well as improving the public understanding of SARS-CoV-2 VOCs.</p>","PeriodicalId":43868,"journal":{"name":"Journal of Visual Communication in Medicine","volume":" ","pages":"122-132"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17453054.2023.2237087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the COVID-19 pandemic the virus responsible, SARS-CoV-2, became a source of intense interest for non-expert audiences. The viral spike protein gained particular public interest as the main target for protective immune responses, including those elicited by vaccines. The rapid evolution of SARS-CoV-2 resulted in variations in the spike that enhanced transmissibility or weakened vaccine protection. This created new variants of concern (VOCs). The emergence of VOCs was studied using viral sequence data which was shared through portals such as the online Mutation Explorer of the COVID-19 Genomics UK consortium (COG-UK/ME). This was designed for an expert audience, but the information it contained could be of general interest if suitably communicated. Visualisations, interactivity and animation can improve engagement and understanding of molecular biology topics, and so we developed a graphical educational resource, the SARS-CoV-2 Spike Protein Mutation Explorer (SSPME), which used interactive 3D molecular models and animations to explain the molecular biology underpinning VOCs. User testing showed that the SSPME had better usability and improved participant knowledge confidence and knowledge acquisition compared to COG-UK/ME. This demonstrates how interactive visualisations can be used for effective molecular biology communication, as well as improving the public understanding of SARS-CoV-2 VOCs.
期刊介绍:
The Journal is a quarterly, international, peer-reviewed journal that acts as a vehicle for the interchange of information and ideas in the production, manipulation, storage and transport of images for medical education, records and research.