Jeong E Jin, Seohyeon Kim, Hyeji Yu, Keyong Nam Lee, Young Rag Do, Seung Min Lee
{"title":"Soft, adhesive and conductive composite for electroencephalogram signal quality improvement.","authors":"Jeong E Jin, Seohyeon Kim, Hyeji Yu, Keyong Nam Lee, Young Rag Do, Seung Min Lee","doi":"10.1007/s13534-023-00279-7","DOIUrl":null,"url":null,"abstract":"<p><p>Since electroencephalogram (EEG) is a very small electrical signal from the brain, it is very vulnerable to external noise or motion artifact, making it difficult to measure. Therefore, despite the excellent convenience of dry electrodes, wet electrodes have been used. To solve this problem, self-adhesive and conductive composites using carbon nanotubes (CNTs) in adhesive polydimethylsiloxane (aPDMS), which can have the advantages of both dry and wet electrodes, have been developed by mixing them uniformly with methyl group-terminated PDMS. The CNT/aPDMS composite has a low Young's modulus, penetrates the skin well, has a high contact area, and excellent adhesion and conductivity, so the signal quality is enhanced. As a result of the EEG measurement test, although it was a dry electrode, results comparable to those of a wet electrode were obtained in terms of impedance and motion noise. It also shows excellent biocompatibility in a human fibroblast cell test and a week-long skin reaction test, so it can measure EEG with high signal quality for a long period of time.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 3","pages":"495-504"},"PeriodicalIF":3.2000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-023-00279-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since electroencephalogram (EEG) is a very small electrical signal from the brain, it is very vulnerable to external noise or motion artifact, making it difficult to measure. Therefore, despite the excellent convenience of dry electrodes, wet electrodes have been used. To solve this problem, self-adhesive and conductive composites using carbon nanotubes (CNTs) in adhesive polydimethylsiloxane (aPDMS), which can have the advantages of both dry and wet electrodes, have been developed by mixing them uniformly with methyl group-terminated PDMS. The CNT/aPDMS composite has a low Young's modulus, penetrates the skin well, has a high contact area, and excellent adhesion and conductivity, so the signal quality is enhanced. As a result of the EEG measurement test, although it was a dry electrode, results comparable to those of a wet electrode were obtained in terms of impedance and motion noise. It also shows excellent biocompatibility in a human fibroblast cell test and a week-long skin reaction test, so it can measure EEG with high signal quality for a long period of time.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.