Analysis of tafazzin and deoxyribonuclease 1 like 1 transcripts and X chromosome sequencing in the evaluation of the effect of mosaicism in the TAZ gene on phenotypes in a family affected by Barth syndrome
Teresa Płatek , Maria Sordyl , Anna Polus , Agnieszka Olszanecka , Sławomir Kroczka , Bogdan Solnica
{"title":"Analysis of tafazzin and deoxyribonuclease 1 like 1 transcripts and X chromosome sequencing in the evaluation of the effect of mosaicism in the TAZ gene on phenotypes in a family affected by Barth syndrome","authors":"Teresa Płatek , Maria Sordyl , Anna Polus , Agnieszka Olszanecka , Sławomir Kroczka , Bogdan Solnica","doi":"10.1016/j.mrfmmm.2022.111812","DOIUrl":null,"url":null,"abstract":"<div><p>Barth syndrome is a rare disease affecting mitochondria structure and function in males. In our previous study, we have shown a new mutation (c.83T>A, p.Val28Glu) in the <em>TAZ</em> gene in two affected patients with congenital cardiomyopathy. Furthermore, women in this family had no mutations in their blood cells, whereas they only had mutations in the oral epithelial cells. The objective of the project was to evaluate the effect of intertissue mosaicisms on the Barth syndrome phenotypes, searching for another disease-related loci on chromosome X and finally to assess the consequences of the mutation. We conducted the advanced genetic study including cytogenetic research (constitutional karyotyping in blood and fibroblasts), NGS sequencing (with custom chromosome X sequencing together with the evaluation of loss of heterozygosity (LOH) and aberrations (CNV) in the whole genome) in four different tissues and sequencing of tafazzin and deoxyribonuclease 1 like 1 transcripts. The presence of deletions within the 5′untranslated region of the <em>TAZ</em> gene and/or the noncoding regions of the <em>DNASE1L1</em> gene were detected in several tissues. Whereas, there is no intertissue mosaicism regarding point mutation in <em>TAZ</em> gene in all investigated tissues in female carriers. Only the male patient presented biochemical markers and neurological symptoms of Barth syndrome. All the female carriers are healthy and have normal tafazzin and deoxyribonuclease 1 like 1 transcripts in 2 analyzed tissues. The conclusion of this study is that we cannot rule out or confirm mosaicism in the noncoding regions of <em>TAZ</em> or <em>DNASE1L1</em> genes, but this is not clinically relevant in female carriers because they are healthy. Finally, it has been proven that mutation (c.83T>A, p.Val28Glu) is responsible for disease in males in this family.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"826 ","pages":"Article 111812"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510722000392","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Barth syndrome is a rare disease affecting mitochondria structure and function in males. In our previous study, we have shown a new mutation (c.83T>A, p.Val28Glu) in the TAZ gene in two affected patients with congenital cardiomyopathy. Furthermore, women in this family had no mutations in their blood cells, whereas they only had mutations in the oral epithelial cells. The objective of the project was to evaluate the effect of intertissue mosaicisms on the Barth syndrome phenotypes, searching for another disease-related loci on chromosome X and finally to assess the consequences of the mutation. We conducted the advanced genetic study including cytogenetic research (constitutional karyotyping in blood and fibroblasts), NGS sequencing (with custom chromosome X sequencing together with the evaluation of loss of heterozygosity (LOH) and aberrations (CNV) in the whole genome) in four different tissues and sequencing of tafazzin and deoxyribonuclease 1 like 1 transcripts. The presence of deletions within the 5′untranslated region of the TAZ gene and/or the noncoding regions of the DNASE1L1 gene were detected in several tissues. Whereas, there is no intertissue mosaicism regarding point mutation in TAZ gene in all investigated tissues in female carriers. Only the male patient presented biochemical markers and neurological symptoms of Barth syndrome. All the female carriers are healthy and have normal tafazzin and deoxyribonuclease 1 like 1 transcripts in 2 analyzed tissues. The conclusion of this study is that we cannot rule out or confirm mosaicism in the noncoding regions of TAZ or DNASE1L1 genes, but this is not clinically relevant in female carriers because they are healthy. Finally, it has been proven that mutation (c.83T>A, p.Val28Glu) is responsible for disease in males in this family.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.