Sample-constrained partial identification with application to selection bias.

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-06-01 DOI:10.1093/biomet/asac042
Matthew J Tudball, Rachael A Hughes, Kate Tilling, Jack Bowden, Qingyuan Zhao
{"title":"Sample-constrained partial identification with application to selection bias.","authors":"Matthew J Tudball,&nbsp;Rachael A Hughes,&nbsp;Kate Tilling,&nbsp;Jack Bowden,&nbsp;Qingyuan Zhao","doi":"10.1093/biomet/asac042","DOIUrl":null,"url":null,"abstract":"<p><p>Many partial identification problems can be characterized by the optimal value of a function over a set where both the function and set need to be estimated by empirical data. Despite some progress for convex problems, statistical inference in this general setting remains to be developed. To address this, we derive an asymptotically valid confidence interval for the optimal value through an appropriate relaxation of the estimated set. We then apply this general result to the problem of selection bias in population-based cohort studies. We show that existing sensitivity analyses, which are often conservative and difficult to implement, can be formulated in our framework and made significantly more informative via auxiliary information on the population. We conduct a simulation study to evaluate the finite sample performance of our inference procedure, and conclude with a substantive motivating example on the causal effect of education on income in the highly selected UK Biobank cohort. We demonstrate that our method can produce informative bounds using plausible population-level auxiliary constraints. We implement this method in the [Formula: see text] package [Formula: see text].</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 2","pages":"485-498"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183833/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Many partial identification problems can be characterized by the optimal value of a function over a set where both the function and set need to be estimated by empirical data. Despite some progress for convex problems, statistical inference in this general setting remains to be developed. To address this, we derive an asymptotically valid confidence interval for the optimal value through an appropriate relaxation of the estimated set. We then apply this general result to the problem of selection bias in population-based cohort studies. We show that existing sensitivity analyses, which are often conservative and difficult to implement, can be formulated in our framework and made significantly more informative via auxiliary information on the population. We conduct a simulation study to evaluate the finite sample performance of our inference procedure, and conclude with a substantive motivating example on the causal effect of education on income in the highly selected UK Biobank cohort. We demonstrate that our method can produce informative bounds using plausible population-level auxiliary constraints. We implement this method in the [Formula: see text] package [Formula: see text].

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于选择偏差的样本约束部分识别。
许多部分辨识问题的特征是函数在集合上的最优值,其中函数和集合都需要由经验数据估计。尽管在凸问题上取得了一些进展,但在这种一般情况下的统计推断仍有待发展。为了解决这个问题,我们通过对估计集进行适当的松弛,推导出最优值的渐近有效置信区间。然后,我们将这一一般结果应用于基于人群的队列研究中的选择偏倚问题。我们表明,现有的敏感性分析往往是保守的,难以实施,可以在我们的框架中制定,并通过对人口的辅助信息使信息更加丰富。我们进行了一项模拟研究,以评估我们的推理过程的有限样本性能,并以一个实质性的激励例子来总结教育对收入的因果影响,这个例子是在高度选择的英国生物银行队列中进行的。我们证明了我们的方法可以使用合理的人口水平辅助约束产生信息界。我们在[Formula: see text]包[Formula: see text]中实现了这个方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1