Common data model for sickle cell disease surveillance: considerations and implications.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2023-07-01 DOI:10.1093/jamiaopen/ooad036
Matthew P Smeltzer, Sarah L Reeves, William O Cooper, Brandon K Attell, John J Strouse, Clifford M Takemoto, Julie Kanter, Krista Latta, Allison P Plaxco, Robert L Davis, Daniel Hatch, Camila Reyes, Kevin Dombkowski, Angela Snyder, Susan Paulukonis, Ashima Singh, Mariam Kayle
{"title":"Common data model for sickle cell disease surveillance: considerations and implications.","authors":"Matthew P Smeltzer,&nbsp;Sarah L Reeves,&nbsp;William O Cooper,&nbsp;Brandon K Attell,&nbsp;John J Strouse,&nbsp;Clifford M Takemoto,&nbsp;Julie Kanter,&nbsp;Krista Latta,&nbsp;Allison P Plaxco,&nbsp;Robert L Davis,&nbsp;Daniel Hatch,&nbsp;Camila Reyes,&nbsp;Kevin Dombkowski,&nbsp;Angela Snyder,&nbsp;Susan Paulukonis,&nbsp;Ashima Singh,&nbsp;Mariam Kayle","doi":"10.1093/jamiaopen/ooad036","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Population-level data on sickle cell disease (SCD) are sparse in the United States. The Centers for Disease Control and Prevention (CDC) is addressing the need for SCD surveillance through state-level Sickle Cell Data Collection Programs (SCDC). The SCDC developed a pilot common informatics infrastructure to standardize processes across states.</p><p><strong>Materials and methods: </strong>We describe the process for establishing and maintaining the proposed common informatics infrastructure for a rare disease, starting with a common data model and identify key data elements for public health SCD reporting.</p><p><strong>Results: </strong>The proposed model is constructed to allow pooling of table shells across states for comparison. Core Surveillance Data reports are compiled based on aggregate data provided by states to CDC annually.</p><p><strong>Discussion and conclusion: </strong>We successfully implemented a pilot SCDC common informatics infrastructure to strengthen our distributed data network and provide a blueprint for similar initiatives in other rare diseases.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 2","pages":"ooad036"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/b2/ooad036.PMC10224800.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

Objective: Population-level data on sickle cell disease (SCD) are sparse in the United States. The Centers for Disease Control and Prevention (CDC) is addressing the need for SCD surveillance through state-level Sickle Cell Data Collection Programs (SCDC). The SCDC developed a pilot common informatics infrastructure to standardize processes across states.

Materials and methods: We describe the process for establishing and maintaining the proposed common informatics infrastructure for a rare disease, starting with a common data model and identify key data elements for public health SCD reporting.

Results: The proposed model is constructed to allow pooling of table shells across states for comparison. Core Surveillance Data reports are compiled based on aggregate data provided by states to CDC annually.

Discussion and conclusion: We successfully implemented a pilot SCDC common informatics infrastructure to strengthen our distributed data network and provide a blueprint for similar initiatives in other rare diseases.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镰状细胞病监测的通用数据模型:考虑和影响。
目的:在美国,镰状细胞病(SCD)的人群水平数据很少。疾病控制和预防中心(CDC)正在通过州级镰状细胞数据收集计划(SCDC)解决SCD监测的需要。SCDC开发了一个试验性的公共信息基础设施,以标准化各州的流程。材料和方法:我们描述了为一种罕见疾病建立和维护拟议的公共信息基础设施的过程,从公共数据模型开始,并确定公共卫生SCD报告的关键数据元素。结果:所提出的模型是为了允许跨状态的表壳池进行比较而构建的。核心监测数据报告是根据各州每年向疾病预防控制中心提供的汇总数据编制的。讨论与结论:我们成功实施了SCDC公共信息基础设施试点,以加强我们的分布式数据网络,并为其他罕见病的类似举措提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials. Implications of mappings between International Classification of Diseases clinical diagnosis codes and Human Phenotype Ontology terms. MMFP-Tableau: enabling precision mitochondrial medicine through integration, visualization, and analytics of clinical and research health system electronic data. Addressing ethical issues in healthcare artificial intelligence using a lifecycle-informed process. Development of an evidence- and consensus-based Digital Healthcare Equity Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1