Charlotte Kayser , Barbora Melkes , Cécile Derieux , Andreas Bock
{"title":"Spatiotemporal GPCR signaling illuminated by genetically encoded fluorescent biosensors","authors":"Charlotte Kayser , Barbora Melkes , Cécile Derieux , Andreas Bock","doi":"10.1016/j.coph.2023.102384","DOIUrl":null,"url":null,"abstract":"<div><p><span>G protein-coupled receptors (GPCRs) are ligand-activated cell membrane proteins and represent the most important class of drug targets. GPCRs adopt several active conformations that stimulate different intracellular </span>G proteins<span> (and other transducers) and thereby modulate second messenger levels, eventually resulting in receptor-specific cell responses. It is increasingly accepted that not only the type of active signaling protein but also the duration of its stimulation and the subcellular location from where receptors signal distinctly contribute to the overall cell response. However, the molecular principles governing such spatiotemporal GPCR signaling and their role in disease are incompletely understood. Genetically encoded, fluorescent biosensors—in particular for the GPCR/cAMP signaling axis—have been pivotal to the discovery and molecular understanding of novel concepts in spatiotemporal GPCR signaling. These include GPCR priming, location bias, and receptor-associated independent cAMP nanodomains. Here, we review such technologies that we believe will illuminate the spatiotemporal organization of other GPCR signaling pathways that define the complex signaling architecture of the cell.</span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"71 ","pages":"Article 102384"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471489223000395","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2
Abstract
G protein-coupled receptors (GPCRs) are ligand-activated cell membrane proteins and represent the most important class of drug targets. GPCRs adopt several active conformations that stimulate different intracellular G proteins (and other transducers) and thereby modulate second messenger levels, eventually resulting in receptor-specific cell responses. It is increasingly accepted that not only the type of active signaling protein but also the duration of its stimulation and the subcellular location from where receptors signal distinctly contribute to the overall cell response. However, the molecular principles governing such spatiotemporal GPCR signaling and their role in disease are incompletely understood. Genetically encoded, fluorescent biosensors—in particular for the GPCR/cAMP signaling axis—have been pivotal to the discovery and molecular understanding of novel concepts in spatiotemporal GPCR signaling. These include GPCR priming, location bias, and receptor-associated independent cAMP nanodomains. Here, we review such technologies that we believe will illuminate the spatiotemporal organization of other GPCR signaling pathways that define the complex signaling architecture of the cell.
期刊介绍:
Current Opinion in Pharmacology (COPHAR) publishes authoritative, comprehensive, and systematic reviews. COPHAR helps specialists keep up to date with a clear and readable synthesis on current advances in pharmacology and drug discovery. Expert authors annotate the most interesting papers from the expanding volume of information published today, saving valuable time and giving the reader insight on areas of importance.