Stefan Ståhl, Hanna Lindberg, Linnea Charlotta Hjelm, John Löfblom, Charles Dahlsson Leitao
{"title":"Engineering of Affibody Molecules.","authors":"Stefan Ståhl, Hanna Lindberg, Linnea Charlotta Hjelm, John Löfblom, Charles Dahlsson Leitao","doi":"10.1101/pdb.top107760","DOIUrl":null,"url":null,"abstract":"<p><p>Affibody molecules are small, robust, and versatile affinity proteins currently being explored for therapeutic, diagnostic, and biotechnological applications. Surface-exposed residues on the affibody scaffold are randomized to create large affibody libraries from which novel binding specificities to virtually any protein target can be generated using combinatorial protein engineering. Affibody molecules have the potential to complement-or even surpass-current antibody-based technologies, exhibiting multiple desirable properties, such as high stability, affinity, and specificity, efficient tissue penetration, and straightforward modular extension of functional domains. It has been shown in both preclinical and clinical studies that affibody molecules are safe, efficacious, and valuable alternatives to antibodies for specific targeting in the context of in vivo diagnostics and therapy. Here, we provide a general background of affibody molecules, give examples of reported applications, and briefly summarize the methodology for affibody generation.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top107760"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top107760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Affibody molecules are small, robust, and versatile affinity proteins currently being explored for therapeutic, diagnostic, and biotechnological applications. Surface-exposed residues on the affibody scaffold are randomized to create large affibody libraries from which novel binding specificities to virtually any protein target can be generated using combinatorial protein engineering. Affibody molecules have the potential to complement-or even surpass-current antibody-based technologies, exhibiting multiple desirable properties, such as high stability, affinity, and specificity, efficient tissue penetration, and straightforward modular extension of functional domains. It has been shown in both preclinical and clinical studies that affibody molecules are safe, efficacious, and valuable alternatives to antibodies for specific targeting in the context of in vivo diagnostics and therapy. Here, we provide a general background of affibody molecules, give examples of reported applications, and briefly summarize the methodology for affibody generation.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.