Hanaa M Tashkandi, Hanan S Althagafy, Fatima A Jaber, Turki Alamri, Nouf S Al-Abbas, Nehad A Shaer, Steve Harakeh, Emad H M Hassanein
{"title":"Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals.","authors":"Hanaa M Tashkandi, Hanan S Althagafy, Fatima A Jaber, Turki Alamri, Nouf S Al-Abbas, Nehad A Shaer, Steve Harakeh, Emad H M Hassanein","doi":"10.1080/08923973.2023.2239491","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats.</p><p><strong>Materials and methods: </strong>VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg.</p><p><strong>Results: </strong>VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO<sub>2</sub><sup>-</sup>, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins.</p><p><strong>Conclusion: </strong>Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"11-19"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2239491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats.
Materials and methods: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg.
Results: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins.
Conclusion: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).