Actin-mediated endocytosis in the E-YSL helps drive epiboly in zebrafish.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY Zygote Pub Date : 2023-12-01 Epub Date: 2023-08-03 DOI:10.1017/S0967199423000357
Jackie C Cheng, Andrew L Miller, Sarah E Webb
{"title":"Actin-mediated endocytosis in the E-YSL helps drive epiboly in zebrafish.","authors":"Jackie C Cheng, Andrew L Miller, Sarah E Webb","doi":"10.1017/S0967199423000357","DOIUrl":null,"url":null,"abstract":"<p><p>In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"517-526"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zygote","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199423000357","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌动蛋白介导的E-YSL内吞作用有助于驱动斑马鱼的表观代谢。
在斑马鱼胚胎的卵黄合胞层(E-YSL)中有一个点状的f -肌动蛋白带。本文采用电子显微镜和荧光共聚焦显微镜观察了E-YSL膜在表观代谢过程中的动态变化。通过扫描电镜,我们报道了E-YSL的表面是高度卷曲的,由分支膜表面微绒毛状突起的复杂交织网络组成。膜表面突出的区域在30%时相对较宽,但随着膜的进展而变窄。这种狭窄与点状肌动蛋白带的形成一致。我们还通过免疫金透射电镜证明,肌动蛋白簇主要定位于膜表面的突起以及E-YSL的深层位置。此外,在表观代谢的后期,点状肌动蛋白带与高度动态内吞的区域一致。细胞松弛素B可导致点状肌动蛋白带的破坏和膜表面的突起,以及内吞作用的减弱。总之,我们的数据表明,在E-YSL中,膜表面突起周围的区域及其相关的点状肌动蛋白带可能是局部内吞作用的组成部分,这对斑马鱼胚胎的表观代谢进展很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zygote
Zygote 生物-发育生物学
CiteScore
1.70
自引率
5.90%
发文量
117
审稿时长
6-12 weeks
期刊介绍: An international journal dedicated to the rapid publication of original research in early embryology, Zygote covers interdisciplinary studies on gametogenesis through fertilization to gastrulation in animals and humans. The scope has been expanded to include clinical papers, molecular and developmental genetics. The editors will favour work describing fundamental processes in the cellular and molecular mechanisms of animal development, and, in particular, the identification of unifying principles in biology. Nonetheless, new technologies, review articles, debates and letters will become a prominent feature.
期刊最新文献
Effects of maternal liver abnormality on in vitro maturation of bovine oocytes. The effect of consecutive ejaculation on the sperm parameters in the oligo-astheno-teratozoospermia (OAT) men. A novel microfluidic device for human sperm separation based on rheotaxis. Assessment of the expression levels of two long non-coding RNAs, lnc-CYP11A1-1 and RP11573D15.8, in human aneuploid and euploid embryos. Production of sterile trout (Triploids) by chromosome set manipulation using thermal shock treatment in rainbow trout (Oncorhynchus mykiss) from Kashmir Himalayas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1