Brain circuit pathology in Down syndrome: from neurons to neural networks.

IF 3.4 3区 医学 Q2 NEUROSCIENCES Reviews in the Neurosciences Pub Date : 2023-06-27 DOI:10.1515/revneuro-2022-0067
Renata Bartesaghi
{"title":"Brain circuit pathology in Down syndrome: from neurons to neural networks.","authors":"Renata Bartesaghi","doi":"10.1515/revneuro-2022-0067","DOIUrl":null,"url":null,"abstract":"<p><p>Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 4","pages":"365-423"},"PeriodicalIF":3.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2022-0067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
唐氏综合症的脑回路病理学:从神经元到神经网络。
唐氏综合症(DS)是由21号染色体三倍性引起的一种遗传病理,其特征是从婴儿期开始出现脑萎缩和认知障碍。虽然在小鼠模型上的研究已经阐明了退行性椎体滑移的主要神经解剖学和神经化学缺陷,但相对较少的研究集中在退行性椎体滑移的脑电生理上。脑电活动是大脑功能的基础。因此,了解退行性痴呆中大脑回路的运作方式对于理解行为障碍的原因和制定有针对性的干预措施至关重要。本文从单个神经元到整个神经元网络的信号处理,综述了DS脑电特性的最新研究进展。报道的证据来自退行性椎体滑移小鼠模型和退行性椎体滑移个体的脑组织和神经元。在DS患者中记录的脑电图数据也可以作为理解脑回路改变对整体脑活动影响的关键工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in the Neurosciences
Reviews in the Neurosciences 医学-神经科学
CiteScore
9.40
自引率
2.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.
期刊最新文献
Phase-amplitude coupling during auditory steady-state stimulation: a methodological review. The essential role of cerebrospinal fluid in the brain; a comprehensive review. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Recent advances on brain drug delivery via nanoparticles: alternative future materials for neuroscience applications; a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1