Clearance, biodistribution, and neuromodulatory effects of aluminum-based adjuvants. Systematic review and meta-analysis: what do we learn from animal studies?
J-D Masson, L Angrand, G Badran, R de Miguel, G Crépeaux
{"title":"Clearance, biodistribution, and neuromodulatory effects of aluminum-based adjuvants. Systematic review and meta-analysis: what do we learn from animal studies?","authors":"J-D Masson, L Angrand, G Badran, R de Miguel, G Crépeaux","doi":"10.1080/10408444.2022.2105688","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different <i>in vivo</i> models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":"52 6","pages":"403-419"},"PeriodicalIF":5.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2022.2105688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different in vivo models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.