Sensitive and specific quantification of antisense oligonucleotides using probe alteration-linked self-assembly reaction technology.

IF 2.2 4区 工程技术 Q3 BIOCHEMICAL RESEARCH METHODS BioTechniques Pub Date : 2023-07-01 DOI:10.2144/btn-2023-0005
Masako Osawa, Takurou Akiya, Funa Ogawa, Takao Suzuki, Masaki Yamagami, Tadashi Umemoto, Akira Ideno
{"title":"Sensitive and specific quantification of antisense oligonucleotides using probe alteration-linked self-assembly reaction technology.","authors":"Masako Osawa,&nbsp;Takurou Akiya,&nbsp;Funa Ogawa,&nbsp;Takao Suzuki,&nbsp;Masaki Yamagami,&nbsp;Tadashi Umemoto,&nbsp;Akira Ideno","doi":"10.2144/btn-2023-0005","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative bioanalysis is essential when establishing pharmacokinetic properties during the drug development process. To overcome challenges of sensitivity, specificity and process complexity associated with the conventional analysis of antisense oligonucleotides (ASOs), a new approach to nonenzymatic hybridization assays using probe alteration-linked self-assembly reaction (PALSAR) technology as a signal amplifier was evaluated. PALSAR quantification of ASOs in mouse tissue and plasma was able to achieve a high sensitivity ranging from 1.5 to 6 pg/ml, intra-/interday accuracies in the range of 86.8-119.1% and 88.1-113.1%, respectively, and precision of ≤17.2%. Furthermore, crossreactivity of 3'n-1, a metabolite with a single base difference, was <1%. Our approach provides an auspicious method for distinguishing metabolites and detecting ASOs with high sensitivity and specificity.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":"75 1","pages":"353-362"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2144/btn-2023-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative bioanalysis is essential when establishing pharmacokinetic properties during the drug development process. To overcome challenges of sensitivity, specificity and process complexity associated with the conventional analysis of antisense oligonucleotides (ASOs), a new approach to nonenzymatic hybridization assays using probe alteration-linked self-assembly reaction (PALSAR) technology as a signal amplifier was evaluated. PALSAR quantification of ASOs in mouse tissue and plasma was able to achieve a high sensitivity ranging from 1.5 to 6 pg/ml, intra-/interday accuracies in the range of 86.8-119.1% and 88.1-113.1%, respectively, and precision of ≤17.2%. Furthermore, crossreactivity of 3'n-1, a metabolite with a single base difference, was <1%. Our approach provides an auspicious method for distinguishing metabolites and detecting ASOs with high sensitivity and specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用探针改变链自组装反应技术对反义寡核苷酸进行灵敏和特异的定量分析。
在药物开发过程中建立药代动力学特性时,定量生物分析是必不可少的。为了克服反义寡核苷酸(ASOs)传统分析的敏感性、特异性和过程复杂性的挑战,研究了一种利用探针改变连接自组装反应(PALSAR)技术作为信号放大器进行非酶杂交分析的新方法。PALSAR定量小鼠组织和血浆中ASOs的灵敏度为1.5 ~ 6 pg/ml,日内/日间准确度分别为86.8 ~ 119.1%和88.1 ~ 113.1%,精密度≤17.2%。此外,具有单碱基差异的代谢物3′n-1的交叉反应性也较高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioTechniques
BioTechniques 工程技术-生化研究方法
CiteScore
4.40
自引率
0.00%
发文量
68
审稿时长
3.3 months
期刊介绍: BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies. Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers: Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices Surveys of technical approaches related to broad fields of research Reviews discussing advancements in techniques and methods related to broad fields of research Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.
期刊最新文献
CRISPR in 3D: Innovations in Disease Modelling and Personalized Medicine. A single-cell 3D dynamic volume control system for chondrocytes. A HABA dye-based colorimetric assay to detect unoccupied biotin binding sites in an avidin-containing fusion protein. Comparison of commercially available DNA and RNA extraction kits for wildlife feces collected from the environment. Sampling and analysis methods of air-borne microorganisms in hospital air: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1