Merhnoosh Karimipourfard, Sedigheh Sina, Fereshteh Khodadai Shoshtari, Mehrsadat Alavi
{"title":"Synthesis of Prospective Multiple Time Points F-18 FDG PET Images from a Single Scan Using a Supervised Generative Adversarial Network.","authors":"Merhnoosh Karimipourfard, Sedigheh Sina, Fereshteh Khodadai Shoshtari, Mehrsadat Alavi","doi":"10.1055/a-2026-0784","DOIUrl":null,"url":null,"abstract":"<p><p>The cumulative activity map estimation are essential tools for patient specific dosimetry with high accuracy, which is estimated using biokinetic models instead of patient dynamic data or the number of static PET scans, owing to economical and time-consuming points of view. In the era of deep learning applications in medicine, the pix-to-pix (p2 p) GAN neural networks play a significant role in image translation between imaging modalities. In this pilot study, we extended the p2 p GAN networks to generate PET images of patients at different times according to a 60 min scan time after the injection of F-18 FDG. In this regard, the study was conducted in two sections: phantom and patient studies. In the phantom study section, the SSIM, PSNR, and MSE metric results of the generated images varied from 0.98-0.99, 31-34 and 1-2 respectively and the fine-tuned Resnet-50 network classified the different timing images with high performance. In the patient study, these values varied from 0.88-0.93, 36-41 and 1.7-2.2, respectively and the classification network classified the generated images in the true group with high accuracy. The results of phantom studies showed high values of evaluation metrics owing to ideal image quality conditions. However, in the patient study, promising results were achieved which showed that the image quality and training data number affected the network performance. This study aims to assess the feasibility of p2 p GAN network application for different timing image generation.</p>","PeriodicalId":19238,"journal":{"name":"Nuklearmedizin-nuclear Medicine","volume":"62 2","pages":"61-72"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin-nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2026-0784","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The cumulative activity map estimation are essential tools for patient specific dosimetry with high accuracy, which is estimated using biokinetic models instead of patient dynamic data or the number of static PET scans, owing to economical and time-consuming points of view. In the era of deep learning applications in medicine, the pix-to-pix (p2 p) GAN neural networks play a significant role in image translation between imaging modalities. In this pilot study, we extended the p2 p GAN networks to generate PET images of patients at different times according to a 60 min scan time after the injection of F-18 FDG. In this regard, the study was conducted in two sections: phantom and patient studies. In the phantom study section, the SSIM, PSNR, and MSE metric results of the generated images varied from 0.98-0.99, 31-34 and 1-2 respectively and the fine-tuned Resnet-50 network classified the different timing images with high performance. In the patient study, these values varied from 0.88-0.93, 36-41 and 1.7-2.2, respectively and the classification network classified the generated images in the true group with high accuracy. The results of phantom studies showed high values of evaluation metrics owing to ideal image quality conditions. However, in the patient study, promising results were achieved which showed that the image quality and training data number affected the network performance. This study aims to assess the feasibility of p2 p GAN network application for different timing image generation.
累积活动图估计是高精度患者特定剂量学的重要工具,由于经济和耗时的观点,它使用生物动力学模型而不是患者动态数据或静态PET扫描次数来估计。在医学深度学习应用的时代,像素到像素(p2 p) GAN神经网络在成像模式之间的图像转换中发挥着重要作用。在这项初步研究中,我们扩展了p2 p GAN网络,根据注射F-18 FDG后60分钟的扫描时间,生成患者在不同时间的PET图像。在这方面,研究分为两个部分进行:幻影和患者研究。在幻影研究部分,生成图像的SSIM、PSNR和MSE度量结果分别为0.98-0.99、31-34和1-2,微调后的Resnet-50网络对不同时序图像进行了高性能分类。在患者研究中,这些值分别为0.88-0.93、36-41和1.7-2.2,分类网络对真实组生成的图像进行了较高的分类准确率。幻影研究结果表明,由于理想的图像质量条件,评估指标具有很高的价值。然而,在患者研究中,取得了令人鼓舞的结果,表明图像质量和训练数据数量会影响网络性能。本研究旨在评估p2 p GAN网络应用于不同时序图像生成的可行性。
期刊介绍:
Als Standes- und Fachorgan (Organ von Deutscher Gesellschaft für Nuklearmedizin (DGN), Österreichischer Gesellschaft für Nuklearmedizin und Molekulare Bildgebung (ÖGN), Schweizerischer Gesellschaft für Nuklearmedizin (SGNM, SSNM)) von hohem wissenschaftlichen Anspruch befasst sich die CME-zertifizierte Nuklearmedizin/ NuclearMedicine mit Diagnostik und Therapie in der Nuklearmedizin und dem Strahlenschutz: Originalien, Übersichtsarbeiten, Referate und Kongressberichte stellen aktuelle Themen der Diagnose und Therapie dar.
Ausführliche Berichte aus den DGN-Arbeitskreisen, Nachrichten aus Forschung und Industrie sowie Beschreibungen innovativer technischer Geräte, Einrichtungen und Systeme runden das Konzept ab.
Die Abstracts der Jahrestagungen dreier europäischer Fachgesellschaften sind Bestandteil der Kongressausgaben.
Nuklearmedizin erscheint regelmäßig mit sechs Ausgaben pro Jahr und richtet sich vor allem an Nuklearmediziner, Radiologen, Strahlentherapeuten, Medizinphysiker und Radiopharmazeuten.