MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model.

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-08-05 DOI:10.1159/000533270
Rachel Hartley, Timothy N Phoenix
{"title":"MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model.","authors":"Rachel Hartley, Timothy N Phoenix","doi":"10.1159/000533270","DOIUrl":null,"url":null,"abstract":"<p><p>Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"167-178"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MYC 促进 WNT-成纤维细胞瘤小鼠模型的侵袭性生长和转移
髓母细胞瘤(MB)是最常见的小儿恶性脑肿瘤,由四个在分子和临床上截然不同的亚组(称为 WNT、SHH、第 3 组和第 4 组)组成。根据每个分子亚组相关的遗传和病理特征,预后也有所不同。WNT-MB被认为是低风险,很少发生转移,并含有CTNNB1的激活突变;第3组-MB(GRP3-MB)通常被归类为高风险,经常发生转移,并可能含有基因组改变,导致MYC表达升高。在此,我们比较了低风险WNT-MB和高风险GRP3-MB的模型系统,以确定肿瘤和微环境之间的相互作用可能导致与预后相关的特征。与 GRP3-MB 相比,我们发现 WNT-MB 富含与细胞外基质(ECM)调节和细胞粘附相关的基因集。在小鼠 WNT-MB 模型中,MycT58A 的外源表达会显著加速生长并导致转移性疾病。除了ECM调控和细胞粘附途径的减少,我们还在MycT58A表达后下调幅度最大的信号途径中发现了免疫系统的相互作用。总之,我们的数据提供了证据,证明在WNT-MB小鼠模型中,Myc信号的增加可促进生长和转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1