Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae.

Q1 Medicine EcoSal Plus Pub Date : 2020-10-01 DOI:10.1128/ecosalplus.ESP-0029-2019
Ariel J Santiago, Rodney M Donlan
{"title":"Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: <i>Klebsiella pneumoniae</i>.","authors":"Ariel J Santiago,&nbsp;Rodney M Donlan","doi":"10.1128/ecosalplus.ESP-0029-2019","DOIUrl":null,"url":null,"abstract":"<p><p>Members of the family <i>Enterobacteriaceae</i>, such as <i>Klebsiella pneumoniae</i>, are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/ecosalplus.ESP-0029-2019","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0029-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Members of the family Enterobacteriaceae, such as Klebsiella pneumoniae, are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫生保健相关病原体:肺炎克雷伯菌生物膜的噬菌体感染。
肠杆菌科的成员,如肺炎克雷伯菌,被认为是严重和紧迫的公共卫生威胁。由这些卫生保健相关病原体形成的生物膜可导致负面和昂贵的健康后果。抗生素耐药性的全球蔓延,加上生物膜相关细菌对抗菌素治疗的耐受性增加,突显出需要新的策略来克服治疗障碍。噬菌体(噬菌体),或感染细菌的病毒,已经作为一种潜在的策略重新出现。毒力强的噬菌体能够感染并杀死它们的细菌宿主,在某些情况下会产生能够水解生物膜的解聚合酶。然而,噬菌体治疗确实有其局限性,包括潜在的狭窄宿主范围,细菌对感染的耐药性的发展,以及噬菌体编码的毒力基因的潜在传播。话虽如此,噬菌体分离、筛选和基因组测序工具的进步为克服这些限制提供了有利条件,并开辟了使用噬菌体作为有效生物膜控制剂的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Transcription activation in Escherichia coli and Salmonella. Type IV pili of Enterobacteriaceae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1