DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography.

Frontiers in neuroimaging Pub Date : 2022-09-22 eCollection Date: 2022-01-01 DOI:10.3389/fnimg.2022.917806
Guillaume Theaud, Manon Edde, Matthieu Dumont, Clément Zotti, Mauro Zucchelli, Samuel Deslauriers-Gauthier, Rachid Deriche, Pierre-Marc Jodoin, Maxime Descoteaux
{"title":"DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography.","authors":"Guillaume Theaud, Manon Edde, Matthieu Dumont, Clément Zotti, Mauro Zucchelli, Samuel Deslauriers-Gauthier, Rachid Deriche, Pierre-Marc Jodoin, Maxime Descoteaux","doi":"10.3389/fnimg.2022.917806","DOIUrl":null,"url":null,"abstract":"<p><p>Modern tractography algorithms such as anatomically-constrained tractography (ACT) are based on segmentation maps of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). These maps are generally estimated from a T1-weighted (T1w) image and then registered in diffusion weighted images (DWI) space. Registration of T1w to diffusion space and partial volume estimation are challenging and rarely voxel-perfect. Diffusion-based segmentation would, thus, potentially allow not to have higher quality anatomical priors injected in the tractography process. On the other hand, even if FA-based tractography is possible without T1 registration, the literature shows that this technique suffers from multiple issues such as holes in the tracking mask and a high proportion of generated broken and anatomically implausible streamlines. Therefore, there is an important need for a tissue segmentation algorithm that works directly in the native diffusion space. We propose <b>DORIS</b>, a DWI-based deep learning segmentation algorithm. DORIS outputs 10 different tissue classes including WM, GM, CSF, ventricles, and 6 other subcortical structures (putamen, pallidum, hippocampus, caudate, amygdala, and thalamus). DORIS was trained and validated on a wide range of subjects, including 1,000 individuals from 22 to 90 years old from clinical and research DWI acquisitions, from 5 public databases. In the absence of a \"true\" ground truth in diffusion space, DORIS used a silver standard strategy from Freesurfer output registered onto the DWI. This strategy is extensively evaluated and discussed in the current study. Segmentation maps provided by DORIS are quantitatively compared to Freesurfer and FSL-fast and the impacts on tractography are evaluated. Overall, we show that DORIS is fast, accurate, and reproducible and that DORIS-based tractograms produce bundles with a longer mean length and fewer anatomically implausible streamlines.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"1 ","pages":"917806"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2022.917806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern tractography algorithms such as anatomically-constrained tractography (ACT) are based on segmentation maps of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). These maps are generally estimated from a T1-weighted (T1w) image and then registered in diffusion weighted images (DWI) space. Registration of T1w to diffusion space and partial volume estimation are challenging and rarely voxel-perfect. Diffusion-based segmentation would, thus, potentially allow not to have higher quality anatomical priors injected in the tractography process. On the other hand, even if FA-based tractography is possible without T1 registration, the literature shows that this technique suffers from multiple issues such as holes in the tracking mask and a high proportion of generated broken and anatomically implausible streamlines. Therefore, there is an important need for a tissue segmentation algorithm that works directly in the native diffusion space. We propose DORIS, a DWI-based deep learning segmentation algorithm. DORIS outputs 10 different tissue classes including WM, GM, CSF, ventricles, and 6 other subcortical structures (putamen, pallidum, hippocampus, caudate, amygdala, and thalamus). DORIS was trained and validated on a wide range of subjects, including 1,000 individuals from 22 to 90 years old from clinical and research DWI acquisitions, from 5 public databases. In the absence of a "true" ground truth in diffusion space, DORIS used a silver standard strategy from Freesurfer output registered onto the DWI. This strategy is extensively evaluated and discussed in the current study. Segmentation maps provided by DORIS are quantitatively compared to Freesurfer and FSL-fast and the impacts on tractography are evaluated. Overall, we show that DORIS is fast, accurate, and reproducible and that DORIS-based tractograms produce bundles with a longer mean length and fewer anatomically implausible streamlines.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DORIS:一种基于弥散磁共振成像的 10 组织类深度学习分割算法,专为改善解剖学约束的牵引成像而定制。
解剖约束牵引成像(ACT)等现代牵引成像算法基于白质(WM)、灰质(GM)和脑脊液(CSF)的分割图。这些图谱通常由 T1 加权(T1w)图像估算得出,然后在扩散加权图像(DWI)空间中进行配准。T1w 与弥散空间的配准以及部分容积的估算都具有挑战性,而且很少能做到体素完美。因此,基于弥散的分割有可能在束流成像过程中不注入更高质量的解剖先验。另一方面,即使不进行 T1 注册也能进行基于 FA 的牵引成像,但文献显示这种技术存在多种问题,如跟踪掩膜存在漏洞,生成的断裂流线和解剖学上不合理的流线比例较高。因此,我们亟需一种能直接在原生扩散空间工作的组织分割算法。我们提出了基于 DWI 的深度学习分割算法 DORIS。DORIS 可输出 10 种不同的组织类别,包括 WM、GM、CSF、脑室和其他 6 种皮层下结构(putamen、pallidum、hippocampus、caudate、amygdala 和 thalamus)。DORIS 在广泛的受试者中进行了训练和验证,其中包括从 5 个公共数据库中获取的 1,000 名临床和研究 DWI 患者,年龄从 22 岁到 90 岁不等。由于缺乏扩散空间中的 "真实 "地面实况,DORIS 采用了一种银标准策略,将 Freesurfer 输出注册到 DWI 上。本研究对这一策略进行了广泛的评估和讨论。我们将 DORIS 提供的分割图与 Freesurfer 和 FSL-fast 进行了定量比较,并评估了对牵引图的影响。总之,我们发现 DORIS 快速、准确、可重复,基于 DORIS 的束图产生的束平均长度更长,解剖学上难以置信的流线更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurological complications of left atrial myxoma: a case report on stroke with left atrial myxoma and postoperative brain metastasis and cerebral aneurysm. Resting-state fMRI seizure onset localization meta-analysis: comparing rs-fMRI to other modalities including surgical outcomes. Mediterranean diet and brain functional connectivity in a population without dementia. Inferring neurocognition using artificial intelligence on brain MRIs. Adolescent brain maturation associated with environmental factors: a multivariate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1