{"title":"[Recent advances in the applications of metal-organic frameworks-based molecularly imprinted materials].","authors":"Wei Liu, Dong-Xue Jia, Wen-Hui Lian, Yu Zhao","doi":"10.3724/SP.J.1123.2023.03005","DOIUrl":null,"url":null,"abstract":"<p><p>Molecularly imprinted polymers have received wide attention from various fields owing to their pre-designable, recognition ability, and practicality. However, the disadvantages of the traditional embedding method, which include a slow recognition rate, uneven site recognition, low binding capacity, and incomplete template molecule elution, limit the development of molecular imprinting technology. Surface molecular imprinting techniques have been developed to effectively solve these problems, and different materials are used as carriers in the synthesis of molecularly imprinted polymers. Metal-organic frameworks (MOFs) show great potential as carriers. Because of their high porosity and specific surface area, MOFs can provide a large number of active sites for molecular imprinting, which can improve their detection sensitivity. The variable metal centers and organic ligands of MOF materials can also lead to multiple structures and functions. Numerous types of MOF materials have been synthesized, and the properties of these materials can be tailored by adjusting their pore size and introducing functional groups. MOFs and molecular imprinting technology can be combined to take full advantage of the specific adsorption of molecular imprinting technology and the large specific surface area and multiple active sites of MOFs, thereby expanding the application range of the resulting materials. In this paper, five aspects of the concept of MOF functionalization are discussed: introduction of special ligands, regulation of metal central sites, formation of MOF complexes, derivatization of MOFs, and sacrificial MOFs. The applications of MOF-based molecularly imprinted materials in catalysis, sample pretreatment, drug carriers, fluorescence sensors, and electrochemical sensors are also reviewed. Finally, the existing problems and future development of MOF-based molecularly imprinted materials are discussed and prospected.</p>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 8","pages":"651-661"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398830/pdf/cjc-41-08-651.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"色谱","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2023.03005","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecularly imprinted polymers have received wide attention from various fields owing to their pre-designable, recognition ability, and practicality. However, the disadvantages of the traditional embedding method, which include a slow recognition rate, uneven site recognition, low binding capacity, and incomplete template molecule elution, limit the development of molecular imprinting technology. Surface molecular imprinting techniques have been developed to effectively solve these problems, and different materials are used as carriers in the synthesis of molecularly imprinted polymers. Metal-organic frameworks (MOFs) show great potential as carriers. Because of their high porosity and specific surface area, MOFs can provide a large number of active sites for molecular imprinting, which can improve their detection sensitivity. The variable metal centers and organic ligands of MOF materials can also lead to multiple structures and functions. Numerous types of MOF materials have been synthesized, and the properties of these materials can be tailored by adjusting their pore size and introducing functional groups. MOFs and molecular imprinting technology can be combined to take full advantage of the specific adsorption of molecular imprinting technology and the large specific surface area and multiple active sites of MOFs, thereby expanding the application range of the resulting materials. In this paper, five aspects of the concept of MOF functionalization are discussed: introduction of special ligands, regulation of metal central sites, formation of MOF complexes, derivatization of MOFs, and sacrificial MOFs. The applications of MOF-based molecularly imprinted materials in catalysis, sample pretreatment, drug carriers, fluorescence sensors, and electrochemical sensors are also reviewed. Finally, the existing problems and future development of MOF-based molecularly imprinted materials are discussed and prospected.
期刊介绍:
"Chinese Journal of Chromatography" mainly reports the basic research results of chromatography, important application results of chromatography and its interdisciplinary subjects and their progress, including the application of new methods, new technologies, and new instruments in various fields, the research and development of chromatography instruments and components, instrument analysis teaching research, etc. It is suitable for researchers engaged in chromatography basic and application technology research in scientific research institutes, master and doctoral students in chromatography and related disciplines, grassroots researchers in the field of analysis and testing, and relevant personnel in chromatography instrument development and operation units.
The journal has columns such as special planning, focus, perspective, research express, research paper, monograph and review, micro review, technology and application, and teaching research.