Kara B Carlson, Cameron Nguyen, Dustin J Wcisel, Jeffrey A Yoder, Alex Dornburg
{"title":"Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution.","authors":"Kara B Carlson, Cameron Nguyen, Dustin J Wcisel, Jeffrey A Yoder, Alex Dornburg","doi":"10.1007/s00251-023-01315-7","DOIUrl":null,"url":null,"abstract":"<p><p>Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"465-478"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-023-01315-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.
期刊介绍:
Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.