A Potential Multimodal Test for Clinical Assessment of Visual Attention in Neurological Disorders.

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Clinical EEG and Neuroscience Pub Date : 2023-09-01 DOI:10.1177/15500594221129962
Valentina Barone, Johannes P van Dijk, Mariette H J A Debeij-van Hall, Michel J A M van Putten
{"title":"A Potential Multimodal Test for Clinical Assessment of Visual Attention in Neurological Disorders.","authors":"Valentina Barone,&nbsp;Johannes P van Dijk,&nbsp;Mariette H J A Debeij-van Hall,&nbsp;Michel J A M van Putten","doi":"10.1177/15500594221129962","DOIUrl":null,"url":null,"abstract":"<p><p>Attention is an important aspect of human brain function and often affected in neurological disorders. Objective assessment of attention may assist in patient care, both for diagnostics and prognostication. We present a compact test using a combination of a choice reaction time task, eye-tracking and EEG for assessment of visual attention in the clinic. The system quantifies reaction time, parameters of eye movements (i.e. saccade metrics and fixations) and event related potentials (ERPs) in a single and fast (15 min) experimental design. We present pilot data from controls, patients with mild traumatic brain injury and epilepsy, to illustrate its potential use in assessing attention in neurological patients. Reaction times and eye metrics such as fixation duration, saccade duration and latency show significant differences (p < .05) between neurological patients and controls. Late ERP components (200-800 ms) can be detected in the central line channels for all subjects, but no significant group differences could be found in the peak latencies and mean amplitudes. Our system has potential to assess key features of visual attention in the clinic. Pilot data show significant differences in reaction times and eye metrics between controls and patients, illustrating its promising use for diagnostics and prognostication.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":"54 5","pages":"512-521"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411032/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594221129962","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Attention is an important aspect of human brain function and often affected in neurological disorders. Objective assessment of attention may assist in patient care, both for diagnostics and prognostication. We present a compact test using a combination of a choice reaction time task, eye-tracking and EEG for assessment of visual attention in the clinic. The system quantifies reaction time, parameters of eye movements (i.e. saccade metrics and fixations) and event related potentials (ERPs) in a single and fast (15 min) experimental design. We present pilot data from controls, patients with mild traumatic brain injury and epilepsy, to illustrate its potential use in assessing attention in neurological patients. Reaction times and eye metrics such as fixation duration, saccade duration and latency show significant differences (p < .05) between neurological patients and controls. Late ERP components (200-800 ms) can be detected in the central line channels for all subjects, but no significant group differences could be found in the peak latencies and mean amplitudes. Our system has potential to assess key features of visual attention in the clinic. Pilot data show significant differences in reaction times and eye metrics between controls and patients, illustrating its promising use for diagnostics and prognostication.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经系统疾病患者视觉注意临床评估的潜在多模态试验。
注意力是人类大脑功能的一个重要方面,经常受到神经系统疾病的影响。客观的注意力评估有助于病人的诊断和预测。我们提出了一种紧凑的测试,结合了选择反应时间任务,眼动追踪和脑电图来评估临床中的视觉注意。该系统在一次快速(15分钟)的实验设计中量化反应时间、眼球运动参数(即扫视指标和注视)和事件相关电位(erp)。我们提供了来自对照组、轻度创伤性脑损伤患者和癫痫患者的试点数据,以说明其在评估神经系统患者注意力方面的潜在用途。反应时间和眼睛指标,如注视时间,扫视时间和潜伏期显示显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical EEG and Neuroscience
Clinical EEG and Neuroscience 医学-临床神经学
CiteScore
5.20
自引率
5.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.
期刊最新文献
Ikelos-RWA. Validation of an Automatic Tool to Quantify REM Sleep Without Atonia. Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth. The Clinical Utility of Finding Unexpected Subclinical Spikes Detected by High-Density EEG During Neurodiagnostic Investigations Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1