Organization and replicon interactions within the highly segmented genome of Borrelia burgdorferi.

IF 4.5 2区 生物学 Q1 Agricultural and Biological Sciences PLoS Genetics Pub Date : 2023-07-01 DOI:10.1371/journal.pgen.1010857
Zhongqing Ren, Constantin N Takacs, Hugo B Brandão, Christine Jacobs-Wagner, Xindan Wang
{"title":"Organization and replicon interactions within the highly segmented genome of Borrelia burgdorferi.","authors":"Zhongqing Ren,&nbsp;Constantin N Takacs,&nbsp;Hugo B Brandão,&nbsp;Christine Jacobs-Wagner,&nbsp;Xindan Wang","doi":"10.1371/journal.pgen.1010857","DOIUrl":null,"url":null,"abstract":"<p><p>Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010857"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406323/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1010857","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伯氏疏螺旋体高片段基因组内的组织和复制子相互作用。
伯氏疏螺旋体(Borrelia burgdorferi)是莱姆病的一种病原体,它包含迄今为止已知的最分段的细菌基因组,具有一条线性染色体和20多个质粒。这个异常复杂的基因组是如何组织的,以及不同的复制子是否以及如何相互作用,目前还不清楚。我们最近证明了伯氏疏螺旋体是多倍体,并且染色体和质粒的拷贝在每个细胞中有规律地间隔,这对于基因组忠实地分离到子细胞至关重要。染色体的规则间距由两个独立的分割系统控制,包括蛋白质对ParA/ParZ和ParB/Smc。本研究利用染色体构象捕获(Hi-C)技术表征了伯氏疏螺旋体基因组的结构和复制子之间的相互作用。我们发现,尽管线性染色体在两个复制臂之间缺乏接触,但两个端粒经常接触。此外,一些质粒特异性地与染色体oriC区相互作用,并且一些质粒相互作用比其他质粒相互作用更多。我们发现Smc和类似Smc的MksB蛋白介导染色体上的远程相互作用,但它们对质粒-染色体或质粒-质粒相互作用的影响最小。最后,我们发现这两个分割系统的破坏导致染色体重组,这与染色体oriC的错误定位有关。总之,本研究揭示了一个复杂基因组的构象,并分析了分割系统和SMC家族蛋白对该组织的贡献。这项工作扩大了对多部细菌基因组的组织和维护的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Genetics
PLoS Genetics 生物-遗传学
CiteScore
8.10
自引率
2.20%
发文量
438
审稿时长
1 months
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
期刊最新文献
Subfunctionalization of NRC3 altered the genetic structure of the Nicotiana NRC network The transcription factor RUNT-like regulates pupal cuticle development via promoting a pupal cuticle protein transcription Direct targets of MEF2C are enriched for genes associated with schizophrenia and cognitive function and are involved in neuron development and mitochondrial function Evolutionary rate covariation is pervasive between glycosylation pathways and points to potential disease modifiers Histone variant H2A.Z is needed for efficient transcription-coupled NER and genome integrity in UV challenged yeast cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1