Effect of Low Dietary Folate on Mouse Spermatogenesis and Spindle Assembly Checkpoint Dysfunction May Contribute to Folate Deficiency-Induced Chromosomal Instability in Cultured Mouse Spermatogonia.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-01 DOI:10.1089/dna.2023.0035
Huanhuan Ren, Kaixian Wang, Zirui Liu, Xuansheng Zhong, Meng Liang, Yaping Liao
{"title":"Effect of Low Dietary Folate on Mouse Spermatogenesis and Spindle Assembly Checkpoint Dysfunction May Contribute to Folate Deficiency-Induced Chromosomal Instability in Cultured Mouse Spermatogonia.","authors":"Huanhuan Ren,&nbsp;Kaixian Wang,&nbsp;Zirui Liu,&nbsp;Xuansheng Zhong,&nbsp;Meng Liang,&nbsp;Yaping Liao","doi":"10.1089/dna.2023.0035","DOIUrl":null,"url":null,"abstract":"<p><p>Folate, as the initial substrate in one-carbon metabolism, is involved in the synthesis of important substances such as DNA, RNA, and protein. Folate deficiency (FD) is associated with male subfertility and impaired spermatogenesis, yet the underlying mechanisms are poorly understood. In the present study, we established an animal model of FD to investigate the effect of FD on spermatogenesis. GC-1 spermatogonia were used as a model to investigate the effect of FD on proliferation, viability, and chromosomal instability (CIN). Furthermore, we explored the expression of core genes and proteins of spindle assembly checkpoint (SAC), a signaling cascade ensuring accurate chromosome segregation and preventing CIN during mitosis. Cells were maintained in medium containing 0, 20, 200, or 2000 nM folate for 14 days. CIN was measured by using a cytokinesis-blocked micronucleus cytome assay. We found that sperm counts decreased significantly (<i>p</i> < 0.001) and the rate of sperm with defects in the head increased significantly (<i>p</i> < 0.05) in FD diet mice. We also found, relative to the folate-sufficient conditions (2000 nM), cells cultured with 0, 20, or 200 nM folate exhibited delayed growth and increased apoptosis in an inverse dose-dependent manner. FD (0, 20, or 200 nM) significantly induced CIN (<i>p</i> < 0.001, <i>p</i> < 0.001, and <i>p</i> < 0.05, respectively). Moreover, FD significantly and inverse dose dependently increased the mRNA and protein expression of several key SAC-related genes. The results indicate that FD impairs SAC activity, which contributes to mitotic aberrations and CIN. These findings establish a novel association between FD and SAC dysfunction. Thus, FD-impaired spermatogenesis may be partly due to genomic instability and proliferation inhibition of spermatogonia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Folate, as the initial substrate in one-carbon metabolism, is involved in the synthesis of important substances such as DNA, RNA, and protein. Folate deficiency (FD) is associated with male subfertility and impaired spermatogenesis, yet the underlying mechanisms are poorly understood. In the present study, we established an animal model of FD to investigate the effect of FD on spermatogenesis. GC-1 spermatogonia were used as a model to investigate the effect of FD on proliferation, viability, and chromosomal instability (CIN). Furthermore, we explored the expression of core genes and proteins of spindle assembly checkpoint (SAC), a signaling cascade ensuring accurate chromosome segregation and preventing CIN during mitosis. Cells were maintained in medium containing 0, 20, 200, or 2000 nM folate for 14 days. CIN was measured by using a cytokinesis-blocked micronucleus cytome assay. We found that sperm counts decreased significantly (p < 0.001) and the rate of sperm with defects in the head increased significantly (p < 0.05) in FD diet mice. We also found, relative to the folate-sufficient conditions (2000 nM), cells cultured with 0, 20, or 200 nM folate exhibited delayed growth and increased apoptosis in an inverse dose-dependent manner. FD (0, 20, or 200 nM) significantly induced CIN (p < 0.001, p < 0.001, and p < 0.05, respectively). Moreover, FD significantly and inverse dose dependently increased the mRNA and protein expression of several key SAC-related genes. The results indicate that FD impairs SAC activity, which contributes to mitotic aberrations and CIN. These findings establish a novel association between FD and SAC dysfunction. Thus, FD-impaired spermatogenesis may be partly due to genomic instability and proliferation inhibition of spermatogonia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低叶酸饮食对小鼠精子发生的影响和纺锤体组装检查点功能障碍可能是叶酸缺乏诱导的培养小鼠精原细胞染色体不稳定的原因之一。
叶酸作为单碳代谢的初始底物,参与DNA、RNA、蛋白质等重要物质的合成。叶酸缺乏(FD)与男性生育能力低下和精子发生受损有关,但其潜在机制尚不清楚。在本研究中,我们建立了FD动物模型,研究FD对精子发生的影响。以GC-1精原细胞为模型,探讨FD对细胞增殖、活力和染色体不稳定性(CIN)的影响。此外,我们还探索了纺锤体组装检查点(SAC)的核心基因和蛋白质的表达,这是一个信号级联,确保染色体准确分离并防止有丝分裂过程中的CIN。细胞在含有0、20、200或2000 nM叶酸的培养基中维持14天。使用细胞动力学阻断微核细胞组测定CIN。我们发现精子数量显著下降(p p p p p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1