Sulfur-mediated chalcogen versus hydrogen bonds in proteins: a see-saw effect in the conformational space.

Q3 Biochemistry, Genetics and Molecular Biology QRB Discovery Pub Date : 2023-01-01 DOI:10.1017/qrd.2023.3
Vishal Annasaheb Adhav, Sanket Satish Shelke, Pananghat Balanarayan, Kayarat Saikrishnan
{"title":"Sulfur-mediated chalcogen versus hydrogen bonds in proteins: a see-saw effect in the conformational space.","authors":"Vishal Annasaheb Adhav,&nbsp;Sanket Satish Shelke,&nbsp;Pananghat Balanarayan,&nbsp;Kayarat Saikrishnan","doi":"10.1017/qrd.2023.3","DOIUrl":null,"url":null,"abstract":"<p><p>Divalent sulfur (S) forms a chalcogen bond (Ch-bond) <i>via</i> its σ-holes and a hydrogen bond (H-bond) <i>via</i> its lone pairs. The relevance of these interactions and their interplay for protein structure and function is unclear. Based on the analyses of the crystal structures of small organic/organometallic molecules and proteins and their molecular electrostatic surface potential, we show that the reciprocity of the substituent-dependent strength of the σ-holes and lone pairs correlates with the formation of either Ch-bond or H-bond. In proteins, cystines preferentially form Ch-bonds, metal-chelated cysteines form H-bonds, while methionines form either of them with comparable frequencies. This has implications for the positioning of these residues and their role in protein structure and function. Computational analyses reveal that the S-mediated interactions stabilise protein secondary structures by mechanisms such as helix capping and protecting free β-sheet edges by negative design. The study highlights the importance of S-mediated Ch-bond and H-bond for understanding protein folding and function, the development of improved strategies for protein/peptide structure prediction and design and structure-based drug discovery.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"4 ","pages":"e5"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411326/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2023.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Divalent sulfur (S) forms a chalcogen bond (Ch-bond) via its σ-holes and a hydrogen bond (H-bond) via its lone pairs. The relevance of these interactions and their interplay for protein structure and function is unclear. Based on the analyses of the crystal structures of small organic/organometallic molecules and proteins and their molecular electrostatic surface potential, we show that the reciprocity of the substituent-dependent strength of the σ-holes and lone pairs correlates with the formation of either Ch-bond or H-bond. In proteins, cystines preferentially form Ch-bonds, metal-chelated cysteines form H-bonds, while methionines form either of them with comparable frequencies. This has implications for the positioning of these residues and their role in protein structure and function. Computational analyses reveal that the S-mediated interactions stabilise protein secondary structures by mechanisms such as helix capping and protecting free β-sheet edges by negative design. The study highlights the importance of S-mediated Ch-bond and H-bond for understanding protein folding and function, the development of improved strategies for protein/peptide structure prediction and design and structure-based drug discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质中硫介导的硫与氢键:构象空间中的跷跷板效应。
二价硫(S)通过其σ-空穴形成硫键(ch键),通过其孤对形成氢键(h键)。这些相互作用的相关性及其对蛋白质结构和功能的相互作用尚不清楚。通过对有机/有机金属小分子和蛋白质的晶体结构及其分子静电表面电位的分析,我们发现σ-空穴和孤对的取代基依赖强度的互易性与ch键或h键的形成有关。在蛋白质中,半胱氨酸优先形成ch键,金属螯合半胱氨酸形成h键,而蛋氨酸形成其中任何一个键的频率相当。这对这些残基的定位及其在蛋白质结构和功能中的作用具有重要意义。计算分析表明,s介导的相互作用通过螺旋盖和负设计保护自由β片边缘等机制稳定了蛋白质二级结构。该研究强调了s介导的ch键和h键在理解蛋白质折叠和功能、改进蛋白质/肽结构预测和设计策略以及基于结构的药物发现方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Calcium-binding site in AA10 LPMO from Vibrio cholerae suggests modulating effects during environmental survival and infection. An integrated approach using proximity labelling and chemical crosslinking to probe in situ host-virus protein-protein interactions. The big chill: Growth of in situ structural biology with cryo-electron tomography. Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications. The potential of fluorogenicity for single molecule FRET and DyeCycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1