Cardiac Disease Modeling with Engineered Heart Tissue.

Q1 Pharmacology, Toxicology and Pharmaceutics Handbook of experimental pharmacology Pub Date : 2023-01-01 DOI:10.1007/164_2023_681
Lin Cai, Ruxiang Wang, Donghui Zhang
{"title":"Cardiac Disease Modeling with Engineered Heart Tissue.","authors":"Lin Cai, Ruxiang Wang, Donghui Zhang","doi":"10.1007/164_2023_681","DOIUrl":null,"url":null,"abstract":"<p><p>The rhythmically beating heart is the foundation of life-sustaining blood flow. There are four chambers and many different types of cell in the heart, but the twisted myofibrillar structures formed by cardiomyocytes are particularly important for cardiac contraction and electrical impulse transmission properties. The ability to generate cardiomyocytes using human-induced pluripotent stem cells has essentially solved the cell supply shortage for in vitro simulation of cardiac tissue function; however, modeling heart at the tissue level needs mature myocardial structure, electrophysiology, and contractile characteristics. Here, the current research on human functionalized cardiac microtissue in modeling cardiac diseases is reviewed and the design criteria and practical applications of different human engineered heart tissues, including cardiac organoids, cardiac thin films, and cardiac microbundles are analyzed. Table summarizing the ability of several in vitro myocardial models to assess heart structure and function for cardiac disease modeling.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"235-255"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2023_681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The rhythmically beating heart is the foundation of life-sustaining blood flow. There are four chambers and many different types of cell in the heart, but the twisted myofibrillar structures formed by cardiomyocytes are particularly important for cardiac contraction and electrical impulse transmission properties. The ability to generate cardiomyocytes using human-induced pluripotent stem cells has essentially solved the cell supply shortage for in vitro simulation of cardiac tissue function; however, modeling heart at the tissue level needs mature myocardial structure, electrophysiology, and contractile characteristics. Here, the current research on human functionalized cardiac microtissue in modeling cardiac diseases is reviewed and the design criteria and practical applications of different human engineered heart tissues, including cardiac organoids, cardiac thin films, and cardiac microbundles are analyzed. Table summarizing the ability of several in vitro myocardial models to assess heart structure and function for cardiac disease modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用工程化心脏组织建模心脏病。
有节奏地跳动的心脏是维持生命的血液流动的基础。心脏有四个腔室和许多不同类型的细胞,但由心肌细胞形成的扭曲的肌纤维结构对心脏收缩和电脉冲传输特性特别重要。利用人诱导的多能干细胞生成心肌细胞的能力基本上解决了体外模拟心脏组织功能的细胞供应短缺问题;然而,在组织水平上建模心脏需要成熟的心肌结构、电生理和收缩特性。本文综述了人类功能化心脏微组织在心脏疾病建模中的研究现状,并分析了不同人类工程化心脏组织的设计标准和实际应用,包括心脏类器官、心脏薄膜和心脏微束。表总结了几种体外心肌模型评估心脏结构和功能的能力,用于心脏病建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
期刊最新文献
What Is QSP and Why Does It Exist?: A Brief History. Quantitative Systems Pharmacology Modeling in Immuno-Oncology: Hypothesis Testing, Dose Optimization, and Efficacy Prediction. Application of Quantitative Systems Pharmacology Approaches to Support Pediatric Labeling in Rare Diseases. The Use of Natural Products for Preventing Cognitive Decline/Providing Neuroprotection. Natural Products to Promote Vascular Health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1