Localization of Epileptic Brain Responses to Single-Pulse Electrical Stimulation by Developing an Adaptive Iterative Linearly Constrained Minimum Variance Beamformer.
Sepehr Shirani, Antonio Valentin, Bahman Abdi-Sargezeh, Gonzalo Alarcon, Saeid Sanei
{"title":"Localization of Epileptic Brain Responses to Single-Pulse Electrical Stimulation by Developing an Adaptive Iterative Linearly Constrained Minimum Variance Beamformer.","authors":"Sepehr Shirani, Antonio Valentin, Bahman Abdi-Sargezeh, Gonzalo Alarcon, Saeid Sanei","doi":"10.1142/S0129065723500508","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed responses (DRs) to single pulse electrical stimulation (SPES) in patients with severe refractory epilepsy, from their intracranial recordings, can help to identify regions associated with epileptogenicity. Automatic DR localization is a large step in speeding up the identification of epileptogenic focus. Here, for the first time, an adaptive iterative linearly constrained minimum variance beamformer (AI-LCMV) is developed and employed to localize the DR sources from intracranial electroencephalogram (EEG) recorded using subdural electrodes. The prime objective here is to accurately localize the regions for the corresponding DRs using an adaptive localization method that exploits the morphology of DRs as the desired sources. The traditional closed-form linearly constrained minimum variance (CF-LCMV) solution is meant for tracking the sources with dominating power. Here, by incorporating the morphology of DRs, as a constraint, to an iterative linearly constrained minimum variance (LCMV) solution, the array of subdural electrodes is used to localize the low-power DRs, some not even visible in any of the electrode signals. The results from the cases included in this study also indicate more distinctive locations compared to those achievable by conventional beamformers. Most importantly, the proposed AI-LCMV is able to localize the DRs invisible over other electrodes.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":" ","pages":"2350050"},"PeriodicalIF":6.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500508","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Delayed responses (DRs) to single pulse electrical stimulation (SPES) in patients with severe refractory epilepsy, from their intracranial recordings, can help to identify regions associated with epileptogenicity. Automatic DR localization is a large step in speeding up the identification of epileptogenic focus. Here, for the first time, an adaptive iterative linearly constrained minimum variance beamformer (AI-LCMV) is developed and employed to localize the DR sources from intracranial electroencephalogram (EEG) recorded using subdural electrodes. The prime objective here is to accurately localize the regions for the corresponding DRs using an adaptive localization method that exploits the morphology of DRs as the desired sources. The traditional closed-form linearly constrained minimum variance (CF-LCMV) solution is meant for tracking the sources with dominating power. Here, by incorporating the morphology of DRs, as a constraint, to an iterative linearly constrained minimum variance (LCMV) solution, the array of subdural electrodes is used to localize the low-power DRs, some not even visible in any of the electrode signals. The results from the cases included in this study also indicate more distinctive locations compared to those achievable by conventional beamformers. Most importantly, the proposed AI-LCMV is able to localize the DRs invisible over other electrodes.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.