{"title":"Origin of life: Drawing the big picture","authors":"Francisco Prosdocimi , Sávio Torres de Farias","doi":"10.1016/j.pbiomolbio.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells. Along this path, we aim to provide a brief, though comprehensive theoretical model that will consider the following steps: (i) how nucleotides and other biomolecules could be made prebiotically in specific prebiotic refuges; (ii) how the first molecules of RNAs<span> were formed; (iii) how the proto-peptidyl transferase center was built by the concatenation of proto-tRNAs; (iv) how the ribosome and the genetic code could be structured; (v) how </span></span>progenotes<span><span> could live and reproduce as “naked” ribonucleoprotein<span><span> molecules; (vi) how peptides started to bind molecules in the prebiotic soup allowing biochemical pathways to evolve from those bindings; (vii) how genomes got bigger by the symbiotic relationship of progenotes and lateral transference of genetic material; (viii) how the progenote LUCA has been formed by assembling most biochemical routes; (ix) how the first virion capsids probably emerged and evolved; (x) how phospholipid membranes emerged probably twice by the evolution of lipid-binding proteins; (xi) how </span>DNA synthesis have been formed in parallel in Bacteria and </span></span>Archaea; and, finally, (xii) how DNA-based cells of Bacteria and Archaea have been constituted. The picture provided is conjectural and present epistemological gaps. Future research will help to advance into the elucidation of gaps and confirmation/refutation of current statements.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000391","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells. Along this path, we aim to provide a brief, though comprehensive theoretical model that will consider the following steps: (i) how nucleotides and other biomolecules could be made prebiotically in specific prebiotic refuges; (ii) how the first molecules of RNAs were formed; (iii) how the proto-peptidyl transferase center was built by the concatenation of proto-tRNAs; (iv) how the ribosome and the genetic code could be structured; (v) how progenotes could live and reproduce as “naked” ribonucleoprotein molecules; (vi) how peptides started to bind molecules in the prebiotic soup allowing biochemical pathways to evolve from those bindings; (vii) how genomes got bigger by the symbiotic relationship of progenotes and lateral transference of genetic material; (viii) how the progenote LUCA has been formed by assembling most biochemical routes; (ix) how the first virion capsids probably emerged and evolved; (x) how phospholipid membranes emerged probably twice by the evolution of lipid-binding proteins; (xi) how DNA synthesis have been formed in parallel in Bacteria and Archaea; and, finally, (xii) how DNA-based cells of Bacteria and Archaea have been constituted. The picture provided is conjectural and present epistemological gaps. Future research will help to advance into the elucidation of gaps and confirmation/refutation of current statements.