{"title":"Analyses of damage-associated molecular patterns, particularly biglycan, in cisplatin-induced rat progressive renal fibrosis.","authors":"Minto Nakagawa, Takeshi Izawa, Mitsuru Kuwamura, Jyoji Yamate","doi":"10.1293/tox.2022-0148","DOIUrl":null,"url":null,"abstract":"<p><p>Damage-associated molecular patterns (DAMPs) and their receptors (TLR-2 and -4) may play important roles in renal fibrosis, of which the pathogenesis is complicated. We used rat renal lesions induced by a single intraperitoneal injection of cisplatin at 6 mg/kg body weight; consisting of tissue damage of renal tubules on days 1 and 3, further damage and regeneration with inflammation mainly on days 5 and 7, and interstitial fibrosis on days 9, 12, 15, and 20. Microarray analyses on days 5 (the commencement of inflammation) and 9 (the commencement of interstitial fibrosis) showed that DAMPs increased by more than two-fold relative to control included common extra-cellular matrix (ECM) components such as laminin (Lamc2) and fibronectin, and heat shock protein family, as well as fibrinogen, although it was limited analysis; Lamc2, an element of basement membrane, may be regarded as an indicator for damaged renal tubules. In the real-time RT-PCR analyses, TLR-2 significantly increased transiently on day 1, whereas TLR-4 significantly increased on days 9 and 15, almost in agreement with the increased biglycan (a small leucine-rich proteoglycan as ubiquitous ECM component). As M1/M2 macrophages participated in renal lesions, such as inflammation and fibrosis, presumably, TLR-4, which may be expressed in immune cells, could play crucial roles in the formation of renal lesions in association with biglycan.</p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"36 3","pages":"181-185"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/d6/tox-36-181.PMC10412960.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2022-0148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Damage-associated molecular patterns (DAMPs) and their receptors (TLR-2 and -4) may play important roles in renal fibrosis, of which the pathogenesis is complicated. We used rat renal lesions induced by a single intraperitoneal injection of cisplatin at 6 mg/kg body weight; consisting of tissue damage of renal tubules on days 1 and 3, further damage and regeneration with inflammation mainly on days 5 and 7, and interstitial fibrosis on days 9, 12, 15, and 20. Microarray analyses on days 5 (the commencement of inflammation) and 9 (the commencement of interstitial fibrosis) showed that DAMPs increased by more than two-fold relative to control included common extra-cellular matrix (ECM) components such as laminin (Lamc2) and fibronectin, and heat shock protein family, as well as fibrinogen, although it was limited analysis; Lamc2, an element of basement membrane, may be regarded as an indicator for damaged renal tubules. In the real-time RT-PCR analyses, TLR-2 significantly increased transiently on day 1, whereas TLR-4 significantly increased on days 9 and 15, almost in agreement with the increased biglycan (a small leucine-rich proteoglycan as ubiquitous ECM component). As M1/M2 macrophages participated in renal lesions, such as inflammation and fibrosis, presumably, TLR-4, which may be expressed in immune cells, could play crucial roles in the formation of renal lesions in association with biglycan.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.